НАНОМОДИФИЦИРОВАННАЯ ЭЛЕКТРОПРОВОДЯЩАЯ КЛЕЕВАЯ КОМПОЗИЦИЯ ХОЛОДНОГО ОТВЕРЖДЕНИЯ Российский патент 2019 года по МПК C09J111/00 B82B3/00 

Описание патента на изобретение RU2688573C1

Изобретение относится к электропроводящим эластичным клеевым композициям, которые могут использоваться в качестве датчика, передающего электрический сигнал от одного склеиваемого материала к другому, применяемых в авиации и машинах специального назначения обороны, локального нагревателя, композита, предназначенного для ремонта нитей обогрева заднего стекла автомобиля и т.д.

В связи со стремительным развитием современной микроэлектроники изготовление печатных плат производят методом аддитивной печати. Разработка электропроводящих композиций, обладающих высокой адгезией, для данной печати вызывает широкий интерес. В научной отечественной и зарубежной литературе уже существуют изобретения, направленные на решение данной задачи.

В патенте РФ №2466168, МПК C09J 9/02, C09J 163/02, С09С 3/08, опубл. 2012.10.11 описан электропроводящий клей, который содержит модифицированную кремнийорганическим соединением эпоксидную смолу в фурилглицидиловом эфире в качестве связующего, полиаминоамид в качестве отвердителя, порошок карбонильного никеля, модифицированный амином, в качестве наполнителя. Изобретение позволяет повысить адгезионную прочность электропроводящего клея на сдвиг за счет уменьшения количества дефектов в клеевом шве.

Хотя использование порошка карбонильного никеля, модифицированного амином, обеспечивает равномерное распределение частиц по объему, однако с увеличением его концентрации для увеличения проводимости клея резко снижаются его когезионные свойства.

Токопроводящая клеевая композиция (Патент РФ №2612717, МПК C09J 9/00, опубл. 2017.10.01), содержит органическое связующее, растворитель, отвердитель и металлический наполнитель - нанодисперсный порошок серебра, в качестве органического связующего содержит продукт сополимеризации винилхлорида с малеиновым ангидридом - (10-20 масс. %), в качестве отвердителя содержит поливинилацетат (1.5-5 масс. %); в качестве растворителя - циклогексанол (2-5 масс. %), и дополнительно введенные пластификатор, металлосодержащие компоненты наноразмерных порошков никеля и кобальта, покрытые углеродными нанотрубками, при этом металлический наполнитель содержит порошок серебра с размерами частиц в диапазоне 3-100 им (50-60 масс. %) и мелкодисперсный порошок серебра с размерами частиц в диапазоне - 0,2-1 мкм (2-9 масс. %) и в композицию дополнительно введены металлосодержащие компоненты наноразмерных порошков никеля и кобальта, покрытых углеродными нанотрубками, при соотношении компонентов: наноразмерный порошок никеля, покрытый углеродными нанотрубками (2-5 масс. %), наноразмерный порошок кобальта, покрытый углеродными нанотрубками (3-6 масс. %)).

Недостатком данного изобретения является использование дефицитных металлов: серебра, никеля и кобальта в виде наноразмерных порошков.

Клейкая паста (U.S. patent №6265471, МПК 2/16, 2001), содержит неорганический наполнитель мере приблизительно 50% по весу, исходя из общего неорганического наполнителя, по меньшей мере, одного материала с теплопроводностью большей, чем около 200 Вт/МК и по меньшей мере около 10% по весу, исходя из общего неорганического наполнителя, по меньшей мере, один материал, имеющий теплопроводность менее чем о 40 Вт/МК, в качестве которых используются металлоорганические соединения.

Недостатками такой композиции аналога [5] являются необходимость нагрева при применении, высокая температура спекания, невозможность использования пасты для посадки кристаллов в полупроводниковых приборах.

Известна разработка эластичной электропроводящей композиции на основе хлоропренового каучука, наполненного ионно-модифицированными многослойными углеродными нанотрубками Nanocyl 7000 (МУНТ) имидазолием (S. Kalaivani, D. Amit, G. Heinrich. Development of conducting polychloroprene rubber using imidazolium based ionic liquid modified multi-walled carbon nanotubes / Composites Science and Technology 71 (2011) 1441-1449), в количестве 0,5, 1,2,3,5 и 10 масс. % МУНТ вводили в хлоропреновый каучук с помощью валков при 40°С. После чего в смесь добавляли 5 масс. % окиси цинка, 4 масс. % окиси магния, 0,5 масс. % стеариновой кислоты и 1 масс. % этилентиомочевины. После смешения всех компонентов производили вулканизацию полученных композитов в прессе при 160°С и давлении 150 кН в течение 1 ч. Лучшую электропроводность, равную 4,69×10-11 См/см, получили на эластомерах полученных смешиванием хлоропренового каучука с 5 масс. % МУНТ функционализированных 1-бутил, 3-метил имидазолием.

Недостатком данного изобретения является сложный процесс получения электропроводящего компонента, а именно функционализации МУНТ трифторметилсульфонильным иммидазолием. Время и процесс отверждения клеевого композита на основе хлоропренового увеличивают продолжительность склеивания деталей.

В работе A. Saritha Chandran, Sunil K. Narayanankutty. An elastomeric conducting composite based on polyaniline coated nylon fiber and chloroprene rubber. / European Polymer Journal 44 (2008) 2418-2429 описан проводящий композит на основе нейлонового волокна с покрытием из полианилина и хлоропренового каучука. Композицию изготавливали с помощью двухвалковой мельницы, перетирая хлоропреновый каучук, полианилин (50-150 масс. %) и нейлоновое волокно. Во время смешивания волокно ориентировалось по направлению вращения валков и образовывало армирующий каркас композиции. После смешивания композицию заливали тонкой пленкой и оставляли на 24 ч. После листы композита прессовали при 150°С, давлении 200 кг/см2 и листы с размерами 15×15×><2 см. Затем листы освобождали от формы и резко остужали полученные образцы погружением в воду.

На полученных образцах исследовали влияние полианилина па электропроводящие свойства. Лучшую электропроводность получили на композиции, содержащей 150 масс. % полианилина, равную 5×10-5 См/см.

Недостатком электропроводящей композиции на основе хлоропренового каучука является высокое содержание полианилина, который, в свою очередь, получают синтезом из анилина, что является экономически не выгодным и трудно реализуемым процессом для промышленного производства.

Известна электропроводящая клеевая композиция па основе эпоксидной и фенолформальдегидной смол с нитрильным каучуком (Беляева Т.Н., Джатиева Р.Д. Исследование возможности получения электропроводящего пленочного клея. Государственное бюджетное учреждение «Инновационно-технологический центр материаловедения», г. Владикавказ IX Международная научно-практическая конференция. В качестве электропроводящего компонента использовали 33-75 масс. % тонкодисперсного порошка серебра. Для наилучшего введения наполнителя и удобства работы с клеевой композицией использовали смесь растворителей этилацетата с ацетоном. Исследование электропроводящих свойств авторы производили на образцах, полученных наливным методом жидкой композиции на лавсановые подложки. Для полного отверждения образцы помешали в термостат, где выдерживали их при 100°С в течение 1 ч., 140°С - 1 ч. и 170°С - 2 ч. Электропроводность клеевой композиции возрастает вместе с концентрацией наполнителя и достигает максимального значения 5×10-4 См/см при концентрации тонкодисперсного порошка серебра в композиции 75 масс. %.

Недостатком клеевой композиции является высокая стоимость электропроводящего наполнителя.

Известна электропроводящая композиция на основе полихлоропренового каучука, наполненного полианилином и углеродными нанотрубками (Massoumi В., Farjadbeh F., Mohammadi R., Entezami A.A. Synthesis of conduclive adhesives based on epoxy resin/nanopolyaniline and chloroprene rub-ber/nanopolyaniline: Characterization of thermal, mechanical and electrical properties. Journal of Composite Materials. Vol 47, Issue 9, 2013. Авторы изготовили клеевую композицию на основе полихлоропренового каучука. В качестве электропроводящих компонент композиции использовали 2 масс. % додецил-функционализированных МУНТ (ФМУНТ) и 10 масс. % полианилина. Для диспергирования электропроводящих компонент основу растворяли в толуоле и перемешивали. Полученный раствор электропроводящих композиций наливали на тефлоновую подложку, получая пленку. Электропроводность данной пленки составляет 3,2×10-2 См/см.

Недостатком электропроводящей композиции является высокое содержание полианилина, процесс химического синтеза которого является сложным процессом, что свидетельствует о возникновении проблемы реализации производства данных клеевых композиций в промышленных масштабах. Так же полученный композит имеет низкую электропроводность.

Известна электропроводящая клеевая композиция для монтажа кристаллов интегральных микросхем (Патент РФ №2076394, МПК H01L 23/29, 1997, содержащая 30,3 масс. % фенолформальдегидной резольной смолы, растворенной в этаноле, 70 масс. % бутадиен-нитрильного каучука, растворенного в бутилацетате. В качестве электропроводящего наполнителя композиция содержит 26-50 масс. % смеси порошков, которая в свою очередь состоит из 0,1-0,2 масс. % порошка карбонильного никеля, 0,15-0,30 масс. % порошка циркония, 0,35-0,75 масс. % порошка хрома и 98,75-99,4 масс. % порошка меди. Удельное объемное сопротивление композиции составляет 2,0-2,2 Ом⋅см.

Недостатком электропроводящей клеевой композиции является большое содержание металлических наполнителей. Кроме того, медный порошок может подвергаться окислению, что приведет к выходу из строя технического устройства, смонтированного с использованием данной композиции.

Наиболее близкой к заявляемому изобретению является клеевая ком-позиция (Патент РФ №2479611 МПК C09J 111/00, C08L 11/00, C09J 11/06, C09J 11/08, опубл. 2013.20.04), содержащая 9,8 масс. % полихлоропренового каучука, 8,8 масс. % бутилфенолформальдегидной смолы, 0,2 масс. % тиурама, 0,5 масс. % оксида цинка, 1,2 масс. % оксида магния, 79 масс. % органического растворителя и 0,5 масс. % модификатора. Органический растворитель представляет собой смесь этилацетата и нефраса. В качестве модификатора композиция содержит модифицированное углеродное волокно размером 2-3 мм.

Недостатком такой композиции является сложность процесса получения углеродного волокна, который осуществляется пиролизом при 400°С в течение 30 мин поливинилспиртового волокна.

Техническим результатом являются: исключение из клеевой электропроводящей композиции на основе полихлоропренового каучука металлических наполнителей, увеличение электропроводящих свойств конечного клеевого слоя.

Технический результат достигается тем, что в наномодифицированной электропроводящей клеевой композиции холодного отверждения, включающей полихлоропреновый каучук наирит НТ, бутилфенолформальдегидную смолу 101 К, оксид цинка, оксид магния, и электропроводящую добавку, диспергированные в растворителе, согласно изобретению, в качестве электропроводящей добавки содержит углеродные нанотрубки «Таунит - М», предварительно модифицированные нанесением на поверхность гидроксильных и/или карбоксильных групп, а в качестве растворителя содержит смесь ацетона с этилацетатом в соотношении при следующем соотношении ком-моментов, масс, ч:

Наномодифицированная электропроводящая клеевая композиция холодного отверждения, в которой электропроводящая добавка может содержать сажу «PrinTex XE2B» при соотношении углеродные нанотрубки «Таунит - М »/ сажа 1/1 или чешуйчатый графит (ЧГ) при соотношений углеродные нанотрубки «Таунит - М»/чешуйчатый графит (ЧГ) 1/1.

Использование в качестве электропроводящей добавки углеродных наиотрубок «Таунит - М», предварительно модифицированных нанесением на поверхность гидроксильных и/или карбоксильных групп, и содержащих в качестве растворителя смесь ацетона с этилацетатом в соотношении обеспечивает получение эластичной электропроводящей клеевой композиции на основе полихлоропренового каучука с высокой адгезией.

За счет получения электропроводящих добавок получен эффект синергии УНТ «Таунит-М» с сажей «PrinTex XE2B» и чешуйчатым графитом ЧГ в клеевой композиции, позволяющий получать повышенную электропроводность. Получение высоких электропроводящих свойств клеевых композиций на концентрации электропроводящих добавок до 10 масс. % обусловлено методикой их диспергирования в основе, которая позволяет образовывать непрерывные электропроводящие цепи из нанотрубок в конечном клеевом слое. Использование малых концентраций УНТ позволяет сохранять адгезию и прочность клеевого соединения.

Далее приводятся данные, доказывающие возможность осуществления заявляемой электропроводящей клеевой композиции и ее эффективность.

Для осуществления изобретения применялись следующие исходные вещества.

Полихлоропреновый каучук наирит НТ - эластичная светло-желтая масса. Основные свойства: хорошая стойкость к открытому огню; отличная адгезия (способность склеиваться) к тканям и металлам; очень хорошая стойкость к атмосферному воздействию, озоностойкость и стойкость к естественному окислению; хорошая стойкость к истиранию и низкой температуре. Хлоропреновый каучук кристаллизуется при растяжении, благодаря чему ненаполненные резины на его основе имеют высокую прочность. При наполнении CR этот показатель резин в некоторых случаях снижается, однако, др. ценные свойства, например, сопротивление раздиру, бензостойкость, как правило, улучшаются. Ограниченная стойкость при низкой температуре.

Фенолформальдегидная смола 101К ТУ 6-10-1261-80 Внешний вид смолы Твердые, хрупкие от светло-желтого до коричневого цвета, прозрачные в тонком изломе куски, размером не более 150 мм, без видимых включений Температура плавления, °С 70-85 Массовая доля золы, %, не более 0,3 Растворимость смолы при температуре (20±2)°C в бензине или смеси бензина и этилацетата или ксилоле (в соотношении 1:2 по объему) Полная Массовая доля свободных фенольных соединений в пересчете на фенол, %, не более 2,0 Массовая доля влаги, %, не более 2,0 Смола 101 (К, ЛК) представляет собой продукт конденсации паратретичного бутилфенола и формальдегида в щелочной среде.

Оксид магния вступает в реакции с разбавленными кислотами, при этом образуя соли. Оксид магния реагирует с горячей водой с образованием гидроксида, не вступает в реакцию с холодной жидкостью. Применение вещества: используют в промышленности при производстве огнеупорных материалов, цемента, для очистки от примесей нефтепродуктов, в качестве наполнителя при производстве резиновых изделий.

Оксид цинка - это амфотерный оксид, кристаллический бесцветный порошок, желтеющий при постепенном нагревании и сублимирующийся при 1800 градусах. Нерастворим в воде. Степень окисления цинка в этом соединения - 2. Теплопроводность составляет - 54 Вт/(м*К). Является полупроводником с шириной зоны 3,3 эВ. Химические свойства оксида цинка: реагирует с кислотами, при этом образуются соли. Реагирует с щелочами с образованием тетра-, три- и гексагидроксицинкатов. Данное вещество растворяется в аммиачном водном растворе. При этом образуется комплексный аммиакат. При сплавлении с оксидами и щелочами цинковый оксид образует цинкаты. При сплавлении с оксидами кремния и бора цинковый оксид образует силикаты и стекловидные борты.

Ацетон - это сложный эфир, он смешивается с водой, диэтиловым эфиром, бензолом, метанолом, этанолом и так далее. Основные термодинамические свойства ацетона: Поверхностное натяжение (20°C): 23,7 мН/м. Стандартная энтальпия образования ΔН (298 К): -247,7 кДж/моль (ж). Стандартная энтропия образования S (298 К): 200 Дж/моль⋅K (ж) Стандартная мольная теплоемкость Ср (298 К): 125 Дж/моль⋅K (ж) Энтальпия плавления ΔHпл: 5,69 кДж/моль. Температура вспышки в воздухе: (-20°C). Температура самовоспламенения на воздухе: 465°C. Пределы взрывоопасных концентраций: 2,6-12,8%. Ацетон хорошо растворяет многие органические вещества, в частности, ацетил - и нитроцеллюлозы, воски, алкалоиды и так далее, а также ряд солей.

Этилацетат бесцветная подвижная жидкость с резким запахом эфира. Молярная масса 88,11 г/моль, температура плавления -83,6°C, температура кипения 77,1°C, плотность 0,9001 г/см3, 1,3724. Растворяется в воде 12% (по массе), в этаноле, диэтиловым эфире, бензоле, хлороформе; образует двойные азеотропные смеси с водой (т. кип. 70,4°C, содержание воды 8,2% по массе), этанолом (71,8; 30,8), метанолом (62,25; 44,0), изопропанолом (75,3: 21,0). CCl4 (74,7; 57), циклогексаном (72,8; 54,0) и тронную азеотропную смесь Э.: вода: этанол (т. кип. 70,3°C, содержание соотв. 83,2, 7,8 и 9% по массе). Применение: Этилацетат широко используется как растворитель, из-за низкой стоимости и малой токсичности, а также приемлемого запаха. В частности, как растворитель нитратов целлюлозы, ацетилцеллюлозы, жиров, восков, для чистки печатных плат, в смеси со спиртом - растворитель в производстве искусственной кожи.

Углеродные нанотрубки «Таунит-М» представляет собой одномерные наномасштабные нитевидные образования поликристаллического графита длиной более 2 мкм с наружными диаметрами от 15 до 40 нм в виде сыпучего порошка черного цвета. Согласно формирующейся классификации, «Таунит» представляет собой многослойные пакетированные нанотрубки с преимущественно конической формой графеновых слоев. Способ получения: газофазное химическое осаждение (каталитический пиролиз-CVD) углеводородов (CxHy) на катализаторах при атмосферном давлении и температуре 580-650°C. Время процесса 10÷80 мин. Для обеспечения равномерного распределения в композиции УНТ «Таунит-М» модифицируют нанесением на поверхность гидроксильных и/или карбоксильных групп, которое предотвращает агломерирование нанотрубок.

Общая характеристика УНМ «Таунит-М»

Электропроводящая сажа «PrinTex ХЕ2В» PRINTEX® ХЕ2-В - ЕСВ, проводящая углеродная сажа для покрытий и полимеров. Printex ХЕ-2В - сверхпроводящая сажа, используется для электропроводящих покрытий, пластмасс и резины. PRINTEX® ХЕ2-В - ECB, проводящая углеродная сажа для покрытий и полимеров

Дополнительная информация:

Графит чешуйчатый ЧГ принадлежит к классу явнокристаллических графитов. Кристаллы в его структуре обладают формой листочков либо пластинок с жирными и пластичными чешуйками. Область применения чешуйчатого графита охватывает использование в металлургии, химической промышленности, электрооборудовании. Также данный материал получил применение в процессе производства формовочных смесей, смазочных материалов и т.п.

Пример №1 Практическая реализация.

Электропроводящая клеевая композиция изготавливалась из следующих компонентов, масс. ч.:

Исходные компоненты взвешивались в соответствии с соотношением. С помощью мельницы «WF-20B» с мощностью 3 кВт и частотой вращения рабочих лопастей 25000 об/мин смешивались в течение 10 мин. Получали смесь углеродных нанотрубок с электропроводящей сажей, которую смачивали определенным количеством смеси растворителей ацетона с этилацетатом (1/2) до образования однородной пасты. Затем согласно соотношению смешивали полихлоропреновый каучук, фенолформальдегидную смолу окись цинка, окись магния и растворители до получения однородной суспензии. После чего основу и электропроводящий компонент смешивали вместе с помощью гомогенизатора до образования однородной смеси. Полученную электропроводящую клеевую композицию наливали на предметные стекла и оставляли па 24 ч. До полного удаления растворителей. В итоге получали пленки клеевой композиции, толщину которых измеряли микрометром. В итоге электропроводность полученных пленок, имеющих размеры 25×25×0,2, составила 5,7×10-1 См/см.

Экспериментально полученные значения электропроводности клеевых композиций на основе полихлоропренового каучука и углеродных наноматериалов, включающих нанотрубки «Таунит-М», смесь нанотрубок с сажей «PrinTex XE2B» и смесь с чешуйчатым графитом (ЧГ) представлены в табл. 1.

Зависимость электропроводности клеевых композиций на основе полихлоропренового каучука, наполненного углеродными наноматериалами.

Нами установлено, что причиной повышения адгезионных показателей клеевых композиций является увеличение когезионной прочности клеевой пленки при введении в состав модифицированных углеродных наноматериалов за счет относительного снижения массы наполнителя.

Применение предлагаемой клеевой композиции позволяет значительно повысить качество соединения изделий за счет увеличения электропроводности.

Похожие патенты RU2688573C1

название год авторы номер документа
Клеевая композиция 2021
  • Кильдебекова Раушания Насгутдиновна
RU2779614C1
КЛЕЕВАЯ КОМПОЗИЦИЯ 2011
  • Кейбал Наталья Александровна
  • Каблов Виктор Федорович
  • Бондаренко Сергей Николаевич
  • Руденко Константин Юрьевич
RU2470976C1
СОСТАВ ДЛЯ ОГНЕЗАЩИТНЫХ ПОКРЫТИЙ РЕЗИН 2015
  • Каблов Виктор Федорович
  • Кейбал Наталья Александровна
  • Руденко Константин Юрьевич
  • Харламов Евгений Викторович
RU2616068C1
СОСТАВ ДЛЯ ОГНЕЗАЩИТНЫХ ПОКРЫТИЙ РЕЗИН 2015
  • Каблов Виктор Федорович
  • Кейбал Наталья Александровна
  • Руденко Константин Юрьевич
  • Харламов Евгений Викторович
RU2616074C1
КЛЕЕВАЯ КОМПОЗИЦИЯ 2010
  • Кейбал Наталья Александровна
  • Каблов Виктор Федорович
  • Бондаренко Сергей Николаевич
  • Волкова Ольга Вячеславовна
  • Мунш Татьяна Андреевна
RU2443743C1
КЛЕЕВАЯ КОМПОЗИЦИЯ 2015
  • Кильдебекова Раушания Насгутдиновна
RU2590542C1
КЛЕЕВАЯ КОМПОЗИЦИЯ 2010
  • Кейбал Наталья Александровна
  • Каблов Виктор Федорович
  • Бондаренко Сергей Николаевич
  • Волкова Ольга Вячеславовна
RU2435816C1
КЛЕЕВАЯ КОМПОЗИЦИЯ 2009
  • Кейбал Наталья Александровна
  • Каблов Виктор Федорович
  • Бондаренко Сергей Николаевич
  • Ярушкин Андрей Александрович
RU2434031C2
КЛЕЕВАЯ КОМПОЗИЦИЯ 2017
  • Каблов Виктор Федорович
  • Кейбал Наталья Александровна
  • Юмагулова Юлия Игоревна
  • Сметанников Сергей Михайлович
RU2677175C1
КЛЕЕВАЯ КОМПОЗИЦИЯ 2011
  • Кейбал Наталья Александровна
  • Каблов Виктор Федорович
  • Бондаренко Сергей Николаевич
  • Руденко Константин Юрьевич
RU2487153C1

Реферат патента 2019 года НАНОМОДИФИЦИРОВАННАЯ ЭЛЕКТРОПРОВОДЯЩАЯ КЛЕЕВАЯ КОМПОЗИЦИЯ ХОЛОДНОГО ОТВЕРЖДЕНИЯ

Изобретение относится к токопроводящим эластичным клеевым композициям, которые могут использоваться в качестве датчика, передающего электрический сигнал от одного склеиваемого материала к другому, применяемых в авиации и машинах специального назначения обороны, локального нагревателя, композита, предназначенного для ремонта нитей обогрева заднего стекла автомобиля и т.д. Композиция включает полихлоропреновый каучук наирит НТ, бутилфенолформальдегидную смолу 101 К, оксид цинка, оксид магния, и электропроводящую добавку, диспергированные в растворителе, в качестве электропроводящей добавки содержит углеродные нанотрубки «Таунит - М», предварительно модифицированные нанесением на поверхность гидроксильных и/или карбоксильных групп, а в качестве растворителя содержит смесь ацетона с этилацетатом в соотношении при следующем соотношении компонентов, мас. ч:

Технический результат, достигаемый при использовании клеевой композиции по изобретению, обеспечивает значительно повысить качество соединения изделий за счет увеличения электропроводности. 2 з.п. ф-лы, 4 табл.

Формула изобретения RU 2 688 573 C1

1. Наномодифицированная электропроводящая клеевая композиция холодного отверждения, включающая полихлоропреновый каучук наирит НТ, бутилфенолформальдегидную смолу 101К, оксид цинка, оксид магния и электропроводящую добавку, диспергированные в растворителе, отличающаяся тем, что она в качестве электропроводящей добавки содержит углеродные нанотрубки «Таунит-М» и в качестве растворителя содержит смесь ацетона с этилацетатом в соотношении при следующем соотношении компонентов, мас.ч:

2. Наномодифицированная электропроводящая клеевая композиция холодного отверждения по п. 1, отличающаяся тем, что электропроводящая добавка содержит сажу «PrinTex XE2B» при соотношении углеродные нанотрубки «Таунит-М»/ сажа 1/1 или чешуйчатый графит (ЧГ) при соотношении углеродные нанотрубки «'Гаунит-М»/чешуйчатый графит (ЧГ) 1/1.

3. Наномодифицированная электропроводящая клеевая композиция холодного отверждения по п. 1, отличающаяся тем, что углеродные нанотрубки «Таунит-М» предварительно модифицируют нанесением на поверхность гидроксильных и/или карбоксильных групп.

Документы, цитированные в отчете о поиске Патент 2019 года RU2688573C1

КЛЕЕВАЯ КОМПОЗИЦИЯ 2011
  • Кейбал Наталья Александровна
  • Каблов Виктор Федорович
  • Бондаренко Сергей Николаевич
  • Руденко Константин Юрьевич
RU2479611C1
КЛЕЕВАЯ КОМПОЗИЦИЯ 2010
  • Кейбал Наталья Александровна
  • Каблов Виктор Федорович
  • Бондаренко Сергей Николаевич
  • Волкова Ольга Вячеславовна
  • Мунш Татьяна Андреевна
RU2435817C1
US 3399181 A, 24.10.1965
Предохранительное устройство ворот шлюза 1986
  • Сандигурский Олег Львович
  • Клюев Вадим Владимирович
  • Ларионов Сергей Владимирович
SU1344857A1
КЛЕЕВАЯ КОМПОЗИЦИЯ 2011
  • Кейбал Наталья Александровна
  • Каблов Виктор Федорович
  • Бондаренко Сергей Николаевич
  • Руденко Константин Юрьевич
RU2479612C1

RU 2 688 573 C1

Авторы

Ткачев Алексей Григорьевич

Меметов Нариман Рустемович

Ягубов Виктор Сахибович

Столяров Роман Александрович

Щегольков Александр Викторович

Даты

2019-05-21Публикация

2018-09-26Подача