Изобретение относится к области транспорта газа и может быть применено на компрессорных станциях (КС) магистральных газопроводов.
Более 80% газоперекачивающих агрегатов (ГПА) компрессорных станций магистральных газопроводов (МГ) имеют газотурбинный привод нагнетателей. Доля электроприводных ГПА снабженных синхронными электродвигателями не превышает 20%. Они имеют ряд преимуществ перед газоперекачивающими агрегатами с газотурбинным приводом. Преимуществами являются высокая конструктивная и эксплуатационная надежность, простота технического обслуживания и ремонта. Их недостатки определяются значительными эксплуатационными затратами, связанными с высокой стоимостью электроэнергии поставляемой из внешних высоковольтных электрических сетей. Кроме того, при снижении расхода газа через магистральный газопровод производят отключение части работающих электроприводных ГПА. В случаях небольших изменений расхода природного газа в газопроводе и нагрузки компрессорной станции, производят дросселирование газа на входе в нагнетатели электоприводных ГПА. При пусках неработающих агрегатов этих типов снижается их надежность вследствие высоких пусковых токовых и механических нагрузок в их электродвигателях.
Известны компрессорные станции с электроприводными ГПА, снабженные частотными преобразователями, с помощью которых при уменьшении расхода газа через магистральный газопровод производят частотное регулирование оборотов электродвигателей электроприводных ГПА со снижением их производительности. (Меньшов Б.Г., Ершов М.С., Яризов А.Д. Электротехнические установки и комплексы в нефтегазовой промышленности. М. Недра, 2000, стр. 389-390). Применение частотных преобразователей позволяет производить плавный пуск электроприводных ГПА при небольших пусковых токах электродвигателей.
Недостатком этих компрессорных станций является применение на них дорогостоящих частотных преобразователей.
Известна регенеративная газотурбинная энергетическая установка ГТЭ-009М, снабженная общим валопроводом, связывающим ротор турбогруппы (компрессора и газовой турбины) с ротором генератора. Валопровод установлен на магнитных подшипниках. Частота вращения ротора генератора 6096 об/мин при частоте вырабатываемого им электрического тока 101,6 Гц. Преимуществом этой установки по сравнению с зарубежными и отечественными аналогами является конструктивная простота и меньшая стоимость. (ГТЭ-009М-Фонд промышленных каталогов. Промкаталог. РФ./PublicDocuments/0801183.pdf)
Наиболее близким по технической сущности к заявляемому изобретению является компрессорная станция магистральных газопроводов с электроприводными газоперекачивающими агрегатами (ГПА). (Патент РФ №2272938). Компрессорная станция содержит электроприводные газоперекачивающие агрегаты с синхронными электродвигателями, энергетические газотурбинные установки с компрессорами, силовыми газовыми турбинами, электрогенераторами, внешнюю высоковольтную электрическую сеть, трансформаторы, шинопроводы, электрические выключатели, дополнительные шинопроводы; синхронные электродвигатели газоперекачивающих агрегатов связаны шинопроводами через электрические выключатели и трансформаторы с внешней высоковольтной электрической сетью; электрогенераторы энергетических газотурбинных установок связаны через дополнительные шинопроводы и электрические выключатели с синхронными электродвигателями электроприводных газоперекачивающих агрегатов.
Эта компрессорная станция магистральных газопроводов с электроприводными газоперекачивающими агрегатами принята в качестве прототипа предполагаемого изобретения.
Недостатком прототипа является необходимость применения в электроприводных ГПА повышающих редукторов установленных между синхронными электродвигателями с числом оборотов 3000 об/мин и центробежными нагнетателями природного газа с высоким числом оборотов 5500-8000 об/мин. Кроме того, при уменьшении расхода газа через магистральный газопровод обычно отключают часть работающих электроприводных ГПА или же дросселируют природный газ, сжатый их нагнетателями.
Технической задачей настоящего изобретения являются устранение недостатков прототипа и повышение экономичности компрессорной станции с электроприводными ГПА и энергетическими газотурбинными установками. Поставленные задачи решаются в предполагаемом изобретении за счет того, что компрессорная станция магистрального газопровода, содержащая электроприводные газоперекачивающие агрегаты с синхронными электродвигателями, энергетические газотурбинные установки с компрессорами, газовыми турбинами, электрогенераторами, внешнюю высоковольтную электрическую сеть, трансформаторы, шинопроводы, электрические выключатели, дополнительные шинопроводы; электрогенераторы энергетических газотурбинных установок связаны через дополнительные шинопроводы и электрические выключатели с синхронными электродвигателями электроприводных газоперекачивающих агрегатов, а также связаны через шинопроводы с электрическими выключателями и трансформаторы с внешней высоковольтной линией электропередачи, причем применены энергетические газотурбинные установки с высокооборотными компрессорами и газовыми турбинами и дополнительные электронные преобразователи частоты; роторы высокооборотных компрессоров и газовых турбин установлены на магнитных подшипниках и соединены общими валами с роторами высокооборотных электрогенераторов;. которые связаны через дополнительные шинопроводы и электрические выключатели с синхронными электродвигателями по меньшей мере одного электроприводного газоперекачивающего агрегата, кроме того
высокооборотные электрогенераторы энергетических газотурбинных установок связаны через электронные преобразователи частоты и шинопроводы с электрическими выключателями с электрооборудованием собственных нужд компрессорной станции, а также связаны через трансформатор с внешней высоковольтной линией электропередачи.
Предлагаемые в изобретении технические решения имеют преимущества как перед известными аналогами, так и перед прототипом.
Применение энергетических газотурбинные установки с высокооборотными компрессорами и газовыми турбинами установленными на магнитных подшипниках и высокооборотных синхронных электродвигателей электроприводных ГПА позволяет упростить их конструкцию, уменьшить стоимость и отказаться от применения повышающих редукторов обычно устанавливаемых между синхронными электродвигателями и нагнетателями электроприводных ГПА. Применение дополнительных шинопроводов с электрическими выключателями связывающих электрогенератор с синхронными электродвигателями электроприводных ГПА позволяет при уменьшении расхода газа через магистральный газопровод путем изменения мощности и оборотов электрогенераторов энергетических ГТУ осуществлять высокоэкономичное частотное регулирование нагрузки электроприводных ГПА. Применение электронных преобразователей частоты позволяет осуществлять питание избыточной электроэнергией вырабатываемой электрогенераторами энергетических ГТУ электрооборудование собственных нужд КС и внешних потребителей.
Принципиальная схема предлагаемой в изобретении компрессорной станции магистральных газопроводов с электроприводными газоперекачивающими агрегатами представлена на чертеже.
Она содержит энергетическую ГТУ с высокооборотным компрессором 1, регенеративным воздухоподогревателем 2, высокооборотными газовой турбиной 3 и электрогенератором 4, шинопровод 5, электронный преобразователь частоты 6, дополнительный шинопровод 7, электрическую сеть компрессорной станции 8 с частотой тока 50 Гц, связанную через трансформатор 9 с внешней высоковольтной ЛЭП, электрические выключатели 10, высокооборотные синхронные электродвигатели 11 и центробежные нагнетатели 12 электроприводных ГПА, магистральный газопровод 13.
Компрессор 1 через регенеративный воздухоподогреватель 2 и камеру сгорания связан с входом газовой турбины 3, выход которой по продуктам сгорания через регенеративный воздухоподогреватель 2 связан с атмосферой. Высокооборотные компрессор 1 и газовая турбина 3, установленные на магнитных подшипниках, соединены общим валом с высокооборотным электрогенератором 4. Он связан шинопроводом 5 через электронный преобразователь частоты 6 и электрический выключатель 10 с электрической сетью 8 компрессорной станции и через трансформаматор 9 с внешней высоковольтной ЛЭП.. Шинопровод 5 также связан дополнительным шинопроводом 7 через электрические выключатели 10 с высокочастотными высокооборотными синхронными электродвигателями 11, которые соединены валами с центробежными нагнетателями природного газа 12, Последние установлены в магистральном газопроводе 13.
Компрессорная станция магистрального газопровода с электроприводными ГПА и энергетической газотурбинной установкой работает следующим образом. Атмосферный воздух сжимают в высокооборотном компрессоре 1, подогревают в регенеративном высокооборотном компрессоре 1, подогревают в регенеративном воздухоподогревателе 2, в камере сгорания сжигают топливо. Продукты сгорания расширяют в высокооборотной газовой турбине 3, полезную работу которой используют для привода компрессора 1 и выработки электроэнергии в высокооборотном электрогенераторе 4. Роторы компрессора и газовой турбины установлены на магнитных подшипниках. Электроэнергию высокой частоты (100 и более Гц), выработанную электрогенератором 4 подают по шинопроводу 5 дополнительному шинопроводу 7 с электрическими выключателями 10 к высокооборотным синхронным электродвигателям 11, приводящим центробежные нагнетатели 12 электроприводных ГПА сжимающих природный газа подаваемого в магистральный газопровод 13.
Меньшую часть электроэнергии выработанной в электрогенераторе 4, которая может быть избыточной для питания электродвигателей 11 электроприводных ГПА, по шинопроводу 5 через электронный преобразователь частоты 6, снижая в нем частоту тока до 50 Гц, подают в электрическую сеть 8 компрессорной станции и при необходимости направляют избыточную электроэнергию через трансформатор 9 во внешнюю высоковольтную ЛЭП.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РАБОТЫ КОМПРЕССОРНОЙ СТАНЦИИ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ С ГАЗОТУРБИННЫМИ И ЭЛЕКТРОПРИВОДНЫМИ ГАЗОПЕРЕКАЧИВАЮЩИМИ АГРЕГАТАМИ И ГАЗОТУРБОДЕТАНДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКОЙ | 2019 |
|
RU2740388C1 |
СПОСОБ РАБОТЫ КОМПРЕССОРНОЙ СТАНЦИИ МАГИСТРАЛЬНОГО ГАЗОПРОВОДА | 2022 |
|
RU2801441C2 |
Способ работы компрессорной станции магистрального газопровода с энергетической установкой | 2023 |
|
RU2825692C1 |
КОМПРЕССОРНАЯ СТАНЦИЯ МАГИСТРАЛЬНОГО ГАЗОПРОВОДА | 2018 |
|
RU2686961C1 |
СПОСОБ УПРАВЛЕНИЯ КОМПРЕССОРНОЙ СТАНЦИЕЙ С ЭЛЕКТРОПРИВОДНЫМИ ГАЗОПЕРЕКАЧИВАЮЩИМИ АГРЕГАТАМИ | 2014 |
|
RU2580577C1 |
Способ работы комбинированного газоперекачивающего агрегата компрессорной станции магистрального газопровода | 2021 |
|
RU2778421C1 |
КОМПРЕССОРНАЯ СТАНЦИЯ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ С ЭЛЕКТРОПРИВОДНЫМИ ГАЗОПЕРЕКАЧИВАЮЩИМИ АГРЕГАТАМИ | 2005 |
|
RU2272938C1 |
СПОСОБ РАБОТЫ КОМПРЕССОРНОЙ СТАНЦИИ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ С ЭЛЕКТРОПРИВОДНЫМИ ГАЗОПЕРЕКАЧИВАЮЩИМИ АГРЕГАТАМИ | 2005 |
|
RU2272937C1 |
КОМПРЕССОРНАЯ СТАНЦИЯ МАГИСТРАЛЬНОГО ГАЗОПРОВОДА С ГАЗОТУРБОДЕТАНДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКОЙ | 2014 |
|
RU2576556C2 |
ПОДВОДНЫЙ ГАЗОПЕРЕКАЧИВАЮЩИЙ АГРЕГАТ ДЛЯ МНОГОНИТОЧНОГО ТРУБОПРОВОДА | 2012 |
|
RU2485353C1 |
Изобретение относится к области транспорта газа и может быть применено на компрессорных станциях (КС) магистральных газопроводов. Компрессорная станция снабжена электроприводными ГПА и регенеративными энергетическими газотурбинными установками с высокооборотными компрессорами, газовыми турбинами и электрогенераторами установленными на магнитных подшипниках и связанными между собой общими валами, их электрогенераторы связаны дополнительными шинопроводами с электрическими выключателями с высокооборотными синхронными электродвигателями по меньшей мере одного электроприводного ГПА, а также связаны шинопроводом через электронные преобразователи частоты с электрическими выключателями с электрооборудованием собственных нужд компрессорной станции, а также связаны через трансформатор с внешней высоковольтной линией электропередачи. 1 ил.
Компрессорная станция магистрального газопровода, содержащая электроприводные газоперекачивающие агрегаты с синхронными электродвигателями, энергетические газотурбинные установки с компрессорами, газовыми турбинами, электрогенераторами, внешнюю высоковольтную электрическую сеть, трансформаторы, шинопроводы, электрические выключатели, дополнительные шинопроводы; электрогенераторы энергетических газотурбинных установок связаны через дополнительные шинопроводы и электрические выключатели с синхронными электродвигателями электроприводных газоперекачивающих агрегатов, а также связаны через шинопроводы с электрическими выключателями и трансформаторы с внешней высоковольтной линией электропередачи, отличающаяся тем, что применены энергетические газотурбинные установки с высокооборотными компрессорами и газовыми турбинами и дополнительные электронные преобразователи частоты; роторы высокооборотных компрессоров и газовых турбин установлены на магнитных подшипниках и соединены общими валами с роторами высокооборотных электрогенераторов, которые связаны через дополнительные шинопроводы и электрические выключатели с высокооборотными синхронными электродвигателями по меньшей мере одного электроприводного газоперекачивающего агрегата, кроме того, высокооборотные электрогенераторы энергетических газотурбинных установок связаны через электронные преобразователи частоты и шинопроводы с электрическими выключателями, с электрооборудованием собственных нужд компрессорной станции, а также связаны через трансформатор с внешней высоковольтной линией электропередачи.
КОМПРЕССОРНАЯ СТАНЦИЯ МАГИСТРАЛЬНЫХ ГАЗОПРОВОДОВ С ЭЛЕКТРОПРИВОДНЫМИ ГАЗОПЕРЕКАЧИВАЮЩИМИ АГРЕГАТАМИ | 2005 |
|
RU2272938C1 |
Компрессорная станция для газлифтной добычи нефти | 1987 |
|
SU1740787A1 |
СПОСОБ УПРАВЛЕНИЯ КОМПРЕССОРНОЙ СТАНЦИЕЙ С ЭЛЕКТРОПРИВОДНЫМИ ГАЗОПЕРЕКАЧИВАЮЩИМИ АГРЕГАТАМИ | 2014 |
|
RU2580577C1 |
US 0004184325 A1, 22.01.1980. |
Авторы
Даты
2019-05-21—Публикация
2018-06-15—Подача