Раздвижное сопло ракетного двигателя Российский патент 2019 года по МПК F02K9/97 

Описание патента на изобретение RU2688869C1

Изобретение относится к области ракетостроения, и может быть использовано при разработке и изготовлении ракетных двигателей с соплами большой степени расширения для верхних ступеней ракет и космических аппаратов.

Известны сопла с изменяемой геометрией раструба, имеющие укороченную длину в транспортном положении (режиме «пассажира») и увеличенную длину раструба с выдвинутым телескопическим насадком (насадками) в рабочем положении.

Известно раздвижное сопло ракетного двигателя, содержащее неподвижный раструб, выдвигаемые насадки, многозвенные рычажные механизмы центрирования насадков (в дальнейшем описании - пантографы) - патент РФ №2345239 от 27.01.2009, (взят за прототип). В этом сопле пантографы расположены с наружной стороны насадков в зазоре между задним днищем двигателя и торцами насадков.

Недостатками такого раздвижного сопла являются:

1. Наличие дополнительного зазора между днищем двигателя и торцами насадков для размещения пантографов. Это уменьшает эффективность применения раздвижного сопла в ракете, т.е. сокращает выигрыш по длине ракеты, Полученный за счет установки на ней раздвижного сопла.

2. После раздвижки сопла пантографы остаются на наружной поверхности сопла, что значительно увеличивает полетную массу ступени не только за счет самих пантографов, но и за счет узлов их крепления к неподвижной части и выдвигаемым насадкам (система безударного сброса пантографов с наружной поверхности сопла к настоящему времени не разработана, а техническое решение этого узла представляется весьма сложным и достаточно массивным).

Технической проблемой предлагаемого изобретения является устранение указанных недостатков конструкции, повышение энергомассовых характеристик ракеты за счет более рационального размещения пантографов внутри газового тракта сопла и сброса элементов конструкции, обеспечивающих раздвижку сопла.

Технический результат достигается тем, что в известном раздвижном сопле ракетного двигателя, содержащем неподвижный раструб, выдвигаемый насадок (насадки), многозвенные рычажные центрирующие механизмы, установленное внутри малого диаметра выдвигаемого насадка цилиндрическое кольцо рычажные механизмы размещены внутри газового тракта сопла и соединены шарнирно с одной стороны с кольцом, свободно опертым на коническую поверхность большого диаметра внутренней поверхности неподвижного раструба и сопряженный с ней торец неподвижного раструба, а с другой стороны с цилиндрическим кольцом выдвигаемого насадка. Цилиндрическое кольцо установлено таким образом, что при фиксации насадка в выдвинутом положении связь кольца с насадком снимается. Длина звеньев рычажного механизма выбрана таким образом, что длина полного перемещения вдоль оси сопла конца звена, связанного с цилиндрическим кольцом выдвигаемого насадка, больше пути раздвижки выдвигаемого насадка.

В процессе раздвижки после фиксации выдвигаемого насадка в выдвинутом положении цилиндрическое кольцо отделяется от выдвигаемого насадка и продолжает движение в сторону среза сопла. За счет набранной цилиндрическим кольцом и рычагами пантографов в процессе раздвижки кинетической энергии вся система раздвижки, включающая в себя цилиндрическое кольцо, пантографы и свободно опертое на неподвижный раструб кольцо, выходит из сопла.

Таким образом, за счет переноса пантографов внутрь сопла достигается уменьшение зазора между днищем двигателя и торцами насадков, что позволяет уменьшить длину ступени и, соответственно ракеты в целом, а за счет сброса элементов конструкции, обеспечивающих раздвижку сопла, достигается значительное снижение полетной массы ступени ракеты.

При последующем описании приняты следующие условности и упрощения:

1. Условно показан привод раздвижки, при этом очевидно, что целесообразно разместить привод на сбрасываемых элементах конструкции: на цилиндрическом кольце, установленном в сдвигаемом насадке (например, малоразмерные РДТТ), или на пантографах (например, пружины кручения, установленные на средней оси рычажных механизмов, как показано на графической части).

2. Учитывая то, что в процессе раздвижки сопла каждый выдвигаемый насадок для последующего выполняет роль неподвижного раструба, в описании будет показываться работа только одного насадка.

3. Узел отстыковки цилиндрического кольца от насадка может быть решен различными способами (например, как в патентах РФ №№2180405, 2276280) и показан условно в виде сдвигаемого фиксирующего кольца, как в патенте РФ №2624683.

4. Цилиндрическое кольцо условно показано в виде сплошного цилиндра, хотя конструктивно оно может быть выполнено и другим образом, например, в виде двух кольцевых шпангоутов, соединенных продольными стрингерами (с целью уменьшения массы).

На фиг. 1 изображен внешний вид раздвижного сопла с выдвигаемым насадком в сложенном положении. На фиг. 2 показано сопло с раздвинутым зафиксированным насадком, элементы системы раздвижки от сопла не отстыкованы. На фиг. 3 показано сопло с выдвинутым зафиксированным насадком, элементы системы раздвижки отстыкованы от сопла и выходят из него.

Раздвижное сопло (см. фиг. 1) содержит неподвижный раструб 1, выдвигаемый насадок 2. На неподвижном раструбе установлено кольцо 3, свободно опертое на торец 4 большого диаметра и внутреннюю коническую поверхность 5 неподвижного раструба. Внутри малого диаметра выдвигаемого насадка установлено цилиндрическое кольцо 6, зафиксированное в нем сдвигаемым кольцом 7. Частью кольца 3 и цилиндрического кольца 6 являются кронштейны 8 и 9 соответственно, с которыми шарнирно соединены пантографы 10, состоящие из двух шарнирно соединенных звеньев 11 и 12. В сложенном положении насадок удерживается фиксаторами 13. На средней оси 14 пантографа установлен привод раздвижки 15 в виде пружины кручения. На неподвижном раструбе установлены цанги 16 для фиксации выдвигаемого насадка в раздвинутом положении.

После подачи команды на раздвижку фиксаторы 13 освобождают выдвигаемый насадок, и он под действием пантографов 10, разворачиваемых пружиной привода раздвижки 15, выдвигается в раздвинутое положение. На фиг. 2 показано сопло с раздвинутым зафиксированным насадком, при этом цанги 16 уже зафиксировали насадок 2 в раздвинутом положении, фиксирующее кольцо 7 сдвинулось и сняло жесткую связь цилиндрического кольца 6 с насадком 2, но кольцо 6 от насадка еще не отстыковалось. В этом положении насадок 2 и цилиндрическое кольцо 6 прошли путь раздвижки насадка L, но до разворачивания пантографов в конечное положение 17 осталось еще расстояние L1 (конечное положение разворачивания пантографов, или длина полного перемещения вдоль оси сопла конца звена 11, связанного с цилиндрическим кольцом 6, равная L+L1, определяется расположением осей 18, 19, 20 шарниров пантографа на одной прямой или имеющимися конструктивными ограничениями).

После этого на длине L1 под действием привода раздвижки кольцо 6 отстыковывается от насадка 2 и продолжает движение в сторону среза сопла. По достижению пантографами конечного положения сила инерции снимает кольцо 3 с неподвижного раструба, и вся система раздвижки, включающая в себя кольца 3 и 6 и пантографы 10, вылетает из сопла, как показано на фиг. 3.

Таким образом, предлагаемая конструкция раздвижного сопла ракетного двигателя обеспечивает, во-первых, значительное снижение полетной массы ступени ракеты за счет сброса выполнивших свою функцию элементов конструкции, во-вторых уменьшение длины ступени и, соответственно ракеты в целом, за счет уменьшения зазора между днищем двигателя и торцами насадков.

Похожие патенты RU2688869C1

название год авторы номер документа
Сопло ракетного двигателя 2016
  • Лянгузов Сергей Викторович
  • Ижуткина Алевтина Петровна
RU2620480C1
Раздвижное сопло ракетного двигателя 2017
  • Бондаренко Сергей Александрович
  • Ковалев Андрей Геннадьевич
  • Кремлев Алексей Николаевич
  • Федулов Владимир Сергеевич
RU2660978C1
РАЗДВИЖНОЕ СОПЛО РАКЕТНОГО ДВИГАТЕЛЯ 2000
  • Смольников В.В.
  • Саков Ю.Л.
  • Зыков Г.А.
  • Болотов А.А.
  • Сученков Д.Д.
RU2175725C1
Раздвижное сопло ракетного двигателя 2016
  • Болев Алексей Владимирович
  • Бондаренко Сергей Александрович
  • Ковалев Андрей Геннадьевич
  • Кремлев Алексей Николаевич
  • Федулов Владимир Сергеевич
RU2624683C1
Сопло ракетного двигателя с механизмом раздвижки 2015
  • Лянгузов Сергей Викторович
  • Ижуткина Алевтина Петровна
RU2614436C1
Раздвижное сопло ракетного двигателя (варианты) 2018
  • Черепня Александр Андреевич
  • Охочинский Михаил Никитич
  • Сятчихин Алексей Александрович
RU2712561C1
РАЗДВИЖНОЕ СОПЛО РАКЕТНОГО ДВИГАТЕЛЯ 2011
  • Федулов Владимир Сергеевич
  • Горожанцев Владимир Владимирович
RU2478818C1
СОПЛО РАКЕТНОГО ДВИГАТЕЛЯ С МЕХАНИЗМОМ РАЗДВИЖКИ 2015
  • Иоффе Ефим Исаакович
  • Лянгузов Сергей Викторович
  • Крылов Александр Дмитриевич
  • Ижуткина Алевтина Петровна
RU2602462C1
Поворотное управляющее сопло с гибким раскладным насадком 2015
  • Снесарь Владимир Иванович
  • Брякова Раиса Ивановна
  • Терпогосова Белла Кареновна
  • Копытин Игорь Николаевич
  • Писарев Александр Юрьевич
RU2647022C1
РАЗДВИЖНОЕ СОПЛО РАКЕТНОГО ДВИГАТЕЛЯ 2003
  • Соколовский М.И.
  • Саков Ю.Л.
  • Кремлев А.Н.
  • Каримов В.З.
RU2246025C1

Иллюстрации к изобретению RU 2 688 869 C1

Реферат патента 2019 года Раздвижное сопло ракетного двигателя

Изобретение относится к области ракетостроения и может быть использовано при разработке и изготовлении ракетных двигателей с соплами большой степени расширения для верхних ступеней ракет и космических аппаратов. Раздвижное сопло ракетного двигателя включает неподвижный раструб, выдвигаемый насадок, многозвенные рычажные центрирующие механизмы и установленное внутри малого диаметра выдвигаемого насадка цилиндрическое кольцо. Рычажные механизмы размещены внутри газового тракта сопла и шарнирно соединены с одной стороны с кольцом, свободно опертым на коническую поверхность большого диаметра внутренней поверхности неподвижного раструба и сопряженный с ней торец неподвижного раструба, а с другой стороны шарнирно соединены с цилиндрическим кольцом выдвигаемого насадка. Длина звеньев рычажного механизма выбрана таким образом, что длина полного перемещения вдоль оси сопла конца звена, связанного с цилиндрическим кольцом выдвигаемого насадка, больше пути раздвижки выдвигаемого насадка. Изобретение позволяет обеспечить сброс выполнивших свою функцию элементов конструкции раздвижного сопла, а также уменьшить длину ступени. 3 ил.

Формула изобретения RU 2 688 869 C1

Раздвижное сопло ракетного двигателя, включающее в себя неподвижный раструб, выдвигаемый насадок, многозвенные рычажные центрирующие механизмы, установленное внутри малого диаметра выдвигаемого насадка цилиндрическое кольцо, отличающееся тем, что рычажные механизмы размещены внутри газового тракта сопла и шарнирно соединены с одной стороны с кольцом, свободно опертым на коническую поверхность большого диаметра внутренней поверхности неподвижного раструба и сопряженный с ней торец неподвижного раструба, а с другой стороны шарнирно соединены с цилиндрическим кольцом выдвигаемого насадка, при этом длина звеньев рычажного механизма выбрана таким образом, что длина полного перемещения вдоль оси сопла конца звена, связанного с цилиндрическим кольцом выдвигаемого насадка, больше пути раздвижки выдвигаемого насадка.

Документы, цитированные в отчете о поиске Патент 2019 года RU2688869C1

РАЗДВИЖНОЕ СОПЛО РАКЕТНОГО ДВИГАТЕЛЯ 2011
  • Федулов Владимир Сергеевич
  • Горожанцев Владимир Владимирович
RU2478818C1
US 4706886 A, 17.11.1987
РАЗДВИЖНОЕ СОПЛО РАКЕТНОГО ДВИГАТЕЛЯ 2000
  • Смольников В.В.
  • Саков Ю.Л.
  • Зыков Г.А.
  • Болотов А.А.
  • Сученков Д.Д.
RU2175725C1
Раздвижное сопло ракетного двигателя 2016
  • Болев Алексей Владимирович
  • Бондаренко Сергей Александрович
  • Ковалев Андрей Геннадьевич
  • Кремлев Алексей Николаевич
  • Федулов Владимир Сергеевич
RU2624683C1
РАЗДВИЖНОЕ СОПЛО РАКЕТНОГО ДВИГАТЕЛЯ 2003
  • Соколовский М.И.
  • Саков Ю.Л.
  • Кремлев А.Н.
  • Каримов В.З.
RU2246025C1

RU 2 688 869 C1

Авторы

Ковалев Андрей Геннадьевич

Кремлев Алексей Николаевич

Федулов Владимир Сергеевич

Даты

2019-05-22Публикация

2018-05-23Подача