ШИРОКОПОЛОСНАЯ АНТЕННА Российский патент 2019 года по МПК H01Q5/00 

Описание патента на изобретение RU2690066C2

Изобретение относится к области радиотехники и может быть использовано в качестве антенны для излучения высокочастотного электромагнитного поля в диапазонах от УКВ до СДВ.

По определению «Широкополосная антенна - антенна, электрические характеристики которой диаграмма направленности, входное сопротивление, поляризационные свойства мало меняются при изменении частоты колебаний. Позволяет также без перестройки работать при переходе с одной частоты на другую». ФИЗИЧЕСКАЯ ЭНЦИКЛОПЕДИЯ (dic.academic.ru/dic.nsf/enc_physics/5229/широкополосная антенна).

Известны широкополосные антенны: Сверхширокополосная приемопередающая антенна, Патент РФ №2335834 от 10.10.2008. Сверхширокополосный излучающий элемент с коаксиальным входом и антенная решетка, содержащая такой излучающий элемент, Патент РФ №115569 от 27.04.2012, Broadband transmission line coupled antenna, Патент US №4970524 A от 13.11.1990.

Недостатком известных аналогов широкополосных антенн является то, что их входное сопротивление не остается постоянным в диапазоне рабочих частот. Оно меняется, но в меньшей степени, чем у антенн, не являющихся широкополосными. Это связано с тем, что излучающие элементы антенн представляют собой проводники различной формы и размеров, имеющие индуктивные и емкостные характеристики, комплексные сопротивления которых зависят от номинала рабочей частоты. Поддержание постоянного входного сопротивления антенн в широкой полосе рабочих частот без использования перестраиваемых согласующих устройств, чрезвычайно сложная конструкторская задача, которая до настоящего времени не решена.

Целью настоящего изобретения является обеспечение постоянства и независимости подводимой к антенне энергии высокочастотного сигнала от входного сопротивления антенны в широкой полосе рабочих частот.

Поставленная цель достигается тем, что широкополосная антенна, состоящая из двух полых цилиндров и выводящих кабелей, при этом на стенках этих цилиндров закреплены солнечные батареи, отстоящих друг от друга на расстояние l, определяемое из условия l<<r, l<<λ, где r - расстояние до точки приема, λ - длина волны максимальной рабочей частоты.

Блок-схема антенны приведена на Фиг. 1. Обозначения принятые на Фиг. 1:

1 - полые цилиндры, стенки которых представляют собой солнечные батареи;

2 - выводящие кабели - световоды.

Работа широкополосной антенны осуществляется следующим образом.

Лазерные излучения, промодулированные высокочастотным сигналом, по двум кабелям 2 - световодам подводятся к двум цилиндрам 1, по одному к каждому, при этом высокочастотные модулирующие колебания подводимые к разным цилиндрам должны быть в противофазе. Световое модулированное воздействие на солнечные батареи вызовет появление на их противоположных сторонах электрические заряды, величина которых будет изменяться по закону изменения интенсивности светового потока. Если принять первый модулирующий сигнал равным u1=Umsinωt, то второй должен быть u2=Umsin(ωt+π)=-Umsinωt. В этом случае величины зарядов на цилиндрах 1 будут изменяться, соответственно Q1=Qmsinωt и Q2=Qmsin(ωt+π). Поскольку электрический заряд связан с электрической индукцией D, Q=SD, где S - площадь, занимаемая электрическими зарядами Q1 и Q2, то величина D также будет меняться по гармоническому закону. В результате появляется ток смещения, плотность тока которого определяется выражением: (см. Калашников С.Г. ЭЛЕКТРИЧЕСТВО. М.: Наука, 1977, стр. 287).

На фиг. 2 представлены графики изменений сигналов модулирующих световые потоки лазеров, направляемых на солнечные батареи и график изменения напряженности электрической составляющей излучаемого электромагнитного поля. Противофазное возбуждение верхнего и нижнего цилиндров меняет каждый полупериод соотношение уровней зарядов в нижнем и верхнем цилиндрах, что меняет направление вектора напряженности электрической составляющей поля Е каждые полпериода на противоположный.

Напряженность электрической составляющей, возбуждаемого таким образом электромагнитного поля, определяется аналитическим выражением (Никольский В.В., Никольская Т.И. Электродинамика и распространение радиоволн. М.: ЛИБРОКОМ, 2014, стр. 325, 326):

где: ; i - мнимая единица; ; r0, - орты векторов r и в сферической системе координат, r - расстояние до точки приема.

Изменение рабочей частоты излучаемого сигнала при работе на рассмотренную выше антенну не отражается на работе модулятора светового потока лазерного генератора, что подтверждает получение технического результата, заявленного в цели предполагаемого изобретения - постоянства входных параметров антенны и как следствие ее широкополосность. Реакцией на изменение интенсивности облучения является изменение величин электрических зарядов и, как следствие, изменение тока смещения и соответственно напряженности излучаемого электромагнитного поля. Число отдельных солнечных батареек в горизонтальных и вертикальных рядах антенны определяется требованиями к уровню излучаемого сигнала.

Верхняя частота рабочего диапазона антенны ограничена условием l<<λ, а нижняя частота рабочего диапазона ограничена условием r≥0,5λ. Последнее объясняется тем, что при расстояниях менее 0,5λ напряженности электрического поля Е и магнитного поля Н сдвинуты по фазе на 90° и в результате комплексный поток энергии, характеризуемый вектором Пойнтинга , равен нулю. (Никольский В.В., Никольская Т.И. Электродинамика и распространение радиоволн. М.: ЛИБРОКОМ, 2014, стр. 123, 326-328). С учетом указанных условий верхняя частота определяется соотношением , (с - скорость сета; l - минимальное расстояние между цилиндрами с солнечными батареями), нижняя частота определяется соотношением

На фиг. 3 представлены графики изменений верхних и нижних частот рабочего диапазона при изменении величин r и l. Обозначения, принятые на фиг. 3 следующие: - минимальная частота рабочего диапазона, кГц; , - максимальные частоты рабочего диапазона (кГц) при l (м.) равных 10-2, 10-1 и 1,0 соответственно. Анализ графиков, приведенных на фиг. 3, подтверждает широкополосные свойства антенны, характеризуемые разностью максимальных и минимальной значения частот при различных расстояниях r от антенны и различных величинах зазора l между двумя элементами антенны с солнечными батареями с противофазным питанием.

Принципиальным отличием предложенной антенны от существующих является то, что все солнечные батареи, покрывающие поверхность предлагаемой антенны, в каждый фиксированный момент времени имеют одинаковый электрический заряд, изменяющийся синхронно с изменением модулирующего сигнала, в то время как существующие антенны имеют единственную точку подключения высокочастотного сигнала и заряд в каждой точке антенны различен и соответствует распределению тока в антенне (максимален в точке подключения фидера и минимален на краях излучающих элементов антенны). По этой причине с изменением частоты при линейных размерах проводника соизмеримых с длиной волны рабочей частоты на всех участках проводника антенны могут протекать разные по уровням и направлениям токи проводимости. Как следствие, при превышении геометрических размеров антенны половины длины волны рабочей частоты, часть токов проводимости будет снижать интенсивность излучаемого электромагнитного поля. Фактор соотношения геометрических размеров проводящих поверхностей существующих антенн и длины волны рабочей частоты является одним из самых существенных, влияющих на их широкополосность и входное сопротивление. В предлагаемой антенне влияние геометрических размеров антенны относительно длины волны рабочей частоты существенно снижено из-за принципиально иного подхода к излучающим элементам - все они одновременно воспроизводят мгновенный фазовый потенциал высокочастотного сигнала, поскольку все элементы солнечных батарей возбуждаются синфазно модулированным световым потоком.

Похожие патенты RU2690066C2

название год авторы номер документа
СПОСОБ СЛОЖЕНИЯ МОЩНОСТИ ДВУХ И БОЛЕЕ ИЗЛУЧАТЕЛЕЙ КРАЙНЕНИЗКОЧАСТОТНОГО ДИАПАЗОНА 2016
  • Муравченко Виктор Леонидович
  • Катанович Андрей Андреевич
  • Жаровов Александр Клавдиевич
RU2651636C2
РАДИОПЕРЕДАТЧИК КРАЙНЕНИЗКОЧАСТОТНОГО ДИАПАЗОНА 2018
  • Катанович Андрей Андреевич
  • Муравченко Виктор Леонидович
  • Жаравов Александр Клавдиевич
RU2706221C1
ДИПОЛЬНАЯ АНТЕННА 2013
  • Муравченко Виктор Леонидович
  • Катанович Андрей Андреевич
  • Балахонов Алексей Николаевич
RU2557485C2
Передающий комплекс связи системы связи сверхнизкочастотного и крайненизкочастотного диапазона с глубокопогруженными и удаленными объектами 2022
  • Катанович Андрей Андреевич
  • Муравченко Виктор Леонидович
  • Шеремет Александр Витальевич
RU2796792C1
ШИРОКОПОЛОСНАЯ ПЕРЕДАЮЩАЯ АНТЕННА СРЕДНЕВОЛНОВОГО ДИАПАЗОНА 2021
  • Муравченко Виктор Леонидович
  • Катанович Андрей Андреевич
  • Жаровов Александр Клавдиевич
RU2770157C1
ДВУХДИАПАЗОННАЯ ДИРЕКТОРНАЯ АНТЕННА 2013
  • Горбачев Анатолий Петрович
  • Смирнов Степан Сергеевич
  • Тарасенко Наталья Валентиновна
RU2553096C2
АКТИВНОЕ ПЕРЕДАЮЩЕЕ ШИРОКОПОЛОСНОЕ АНТЕННОЕ УСТРОЙСТВО СВ-ДИАПАЗОНА 2019
  • Матюшкин Сергей Николаевич
  • Муравченко Виктор Леонидович
  • Катанович Андрей Андреевич
  • Потехин Александр Алексеевич
RU2736812C2
ШИРОКОПОЛОСНОЕ РАДИОПЕРЕДАЮЩЕЕ УСТРОЙСТВО 2017
  • Муравченко Виктор Леонидович
  • Катанович Андрей Андреевич
  • Жаровов Александр Клавдиевич
RU2687985C2
ДИПОЛЬНАЯ АНТЕННА 2011
  • Горбачев Анатолий Петрович
  • Филимонова Юлия Олеговна
RU2459326C1
ШИРОКОПОЛОСНАЯ НАСТРАИВАЕМАЯ НЕСИММЕТРИЧНАЯ АНТЕННА 2007
  • Гусев Сергей Николаевич
  • Потанин Олег Михайлович
  • Шайкин Виктор Викторович
RU2345452C1

Иллюстрации к изобретению RU 2 690 066 C2

Реферат патента 2019 года ШИРОКОПОЛОСНАЯ АНТЕННА

Изобретение относится к области радиотехники и может быть использовано в качестве антенны для излучения высокочастотного электромагнитного поля в диапазонах от УКВ до СДВ. Широкополосная антенна состоит из двух полых цилиндров и выводящих кабелей. На стенках цилиндров закреплены солнечные батареи, отстоящие друг от друга на расстояние , определяемое из условия , , где r - расстояние до точки приема, λ - длина волны максимальной рабочей частоты. Технический результат заключается в возможности обеспечения постоянства и независимости подводимой к антенне энергии высокочастотного сигнала от входного сопротивления антенны в широкой полосе рабочих частот. 3 ил.

Формула изобретения RU 2 690 066 C2

Широкополосная антенна, состоящая из двух полых цилиндров и выводящих кабелей, отличающаяся тем, что на стенках этих цилиндров закреплены солнечные батареи, отстоящие друг от друга на расстояние , определяемое из условия , , где r - расстояние до точки приема, λ - длина волны максимальной рабочей частоты.

Документы, цитированные в отчете о поиске Патент 2019 года RU2690066C2

СПОСОБ ГЕНЕРАЦИИ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ В ТЕРАГЕРЦОВОМ ДИАПАЗОНЕ И УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ В ТЕРАГЕРЦОВОМ ДИАПАЗОНЕ 2013
  • Образцов Петр Александрович
  • Чижов Павел Алексеевич
  • Гарнов Сергей Владимирович
RU2539678C2
ОПТОЭЛЕКТРОННОЕ УСТРОЙСТВО 2004
  • Михеев Геннадий Михайлович
  • Образцов Александр Николаевич
  • Зонов Руслан Геннадьевич
  • Свирко Юрий Петрович
RU2273946C2
RU 2011108214 A, 20.09.2012
US 7480434 B2, 20.01.2009.

RU 2 690 066 C2

Авторы

Муравченко Виктор Леонидович

Катанович Андрей Андреевич

Даты

2019-05-30Публикация

2017-05-15Подача