ТЯГОВЫЙ ЭЛЕКТРОПРИВОД АВТОНОМНОГО ТРАНСПОРТНОГО СРЕДСТВА Российский патент 2019 года по МПК B60L50/13 H02M5/42 B60L7/06 

Описание патента на изобретение RU2692288C1

Изобретение относится к дизель-электрической системе привода автомобильного и железнодорожного транспорта и может быть использовано на транспортных средствах с автономным источником энергии, в частности карьерных автосамосвалах с тяговым электроприводом.

Известна тяговая электротрансмиссия гусеничной машин (патент РФ №2006388, опубликован 30.01.1994 г.), содержащая тепловой двигатель, два механически связанных с ним генератора тока, подключенные через преобразователи напряжения к тяговым электродвигателям, выходные валы которых через редукторы подсоединены к движителям.

Недостатками указанной трансмиссии являются увеличенные массогабаритные параметры трансмиссии, обусловленный наличием дополнительных механических связей и дополнительного редуктора и электродвигателя.

Известно транспортное средство с комбинированной энергетической установкой расширенных функциональных возможностей (патент РФ №2473432). Система содержит тепловой двигатель, электрические машины, блоки преобразования и накопления энергии, блок управления, исполнительное устройство рекуперации энергии, исполнительное устройство противобуксовочной системы и системы курсовой устойчивости.

Недостатком такого электропривода является наличие редуктора, главной передачи и дифференциала, что приводит к снижению коэффициента полезного действия системы и увеличению массогабаритных параметров.

Известна дизель-электрическая система привода с возбуждаемым постоянными магнитами синхронным генератором (патент РФ №2429980, опубликован 27.09.2011 г.). Система содержит дизельный двигатель, возбуждаемый постоянными магнитами, синхронный генератор, двухзвенный вентильный преобразователь напряжения, несколько электрических машин с вращающимся магнитным полем, в частности трехфазные асинхронные двигатели, и тормозной прерыватель.

Недостатком такого электропривода является наличие системы возбуждения генератора от постоянных магнитов, что негативно сказывается на надежности системы электропривода при резкопеременном изменении нагрузки, свойственной для системы электропривода карьерных самосвалов.

Известен тяговый электропривод автономного транспортного средства (патент РФ №2139798, опубликован 20.10.1999 г.), содержащий тяговый генератор переменного тока, управляемый выпрямитель, выполненный на тиристорах, автономный инвертор тока, тяговый двигатель.

Недостатком такого электропривода является использование тиристорных ключей в конструкции управляемого выпрямителя, что приводит к низкой энергетической эффективности, низкому быстродействию системы привода, завышению габаритов тягового генератора.

Известен тяговый теплоэлектрический привод переменного тока (авторское свидетельство СССР №527313, опубликован 05.09.1976 г.), принятый за прототип, содержащий синхронный генератор, преобразователь частоты с конденсатором фильтра в звене постоянного тока, асинхронный тяговый электродвигатель, тормозные резисторы и регулятор напряжения синхронного генератора, подключенный к датчику напряжения генератора, отличающийся тем, что, с целью обеспечения устойчивого торможения при всех скоростях движения, он снабжен датчиком тока, включенным последовательно с конденсатором фильтра, логическим элементом сравнения с заданным сигналом, включенным между этим датчиком тока и регулятором напряжения синхронного генератора, и дополнительным датчиком напряжения в звене постоянного тока, выход которого также подключен ко входу регулятора напряжения.

К недостаткам данной трансмиссии можно отнести использование диодных ключей в конструкции выпрямителя, что приводит к снижению показателей энергетической эффективности системы электропривода, а также низкой надежности тягового генератора, обусловленной высокими значениями коэффициентов нелинейных искажений тока и напряжения в части системы синхронный генератор - преобразователь частоты, сложной конструкцией системы возбуждения.

Техническим результатом являются повышение энергетических показателей системы электропривода и повышение надежности синхронного генератора, снижение массогабаритных параметров трансмиссии.

Технический результат достигается тем, что электропривод дополнительно содержит активный фильтр, подключенный через измерительный блок параллельно к входным выводам преобразователя частоты, выходные выводы которого, подключенные к конденсатору, коммутатор соединенный последовательно с тормозным резистором, систему управления, подключенную к измерительным блокам, датчику напряжения, активному фильтру и автономному инвертору напряжения

Тяговый электропривод автономного транспортного средства поясняется следующими фигурами:

фиг. 1 - общая схема устройства;

фиг. 2 - поясняющая схема полностью управляемого полупроводникового ключа;

фиг. 3 - поясняющая схема измерительного блока, где:

1 - первичный дизельный двигатель;

2 - трехфазный синхронный генератор переменного тока;

3 - измерительный блок;

4 - неуправляемый диодный выпрямитель;

5 - активный фильтр;

6 - автономный инвертор напряжения;

7 - асинхронный тяговый двигатель;

8 - выходные выводы трехфазного синхронного генератора переменного тока;

9 - входные выводы неуправляемого выпрямителя;

10 - неуправляемый диодный ключ;

11 - выходные выводы неуправляемого диодного выпрямителя;

12 - датчик напряжения;

13 - конденсатор;

14 - коммутатор;

15 - тормозной резистор;

16 - входные выводы автономного инвертора напряжения;

17 - полностью управляемый полупроводниковый ключ;

18 - выходные выводы автономного инвертора напряжения;

19 - входные выводы асинхронного тягового двигателя;

20 - выходные выводы активного фильтра;

21 - система управления;

22 - транзистор;

23 - датчик тока.

Тяговый электропривод автономного транспортного средства содержит (Фиг. 1) первичный дизельный двигатель 1, соединенный с трехфазным синхронным генератором переменного тока 2, выходные выводы трехфазного синхронного генератора переменного тока 8 соединенные с входными выводами неуправляемого выпрямителя 9 на основе неуправляемых диодных ключей 10, имеющий первый и второй выходные выводы неуправляемого диодного выпрямителя 11, активный фильтр 5 на основе полностью управляемых полупроводниковых ключей 17, каждый из которых содержит (Фиг. 2) параллельно включенные транзистор 22 и неуправляемый диодный ключ 10, подключенный параллельно к входными выводам неуправляемого выпрямителя 9 через измерительный блок 3, содержащий (Фиг. 3) датчики тока 23 и датчики напряжения 12, имеющий выходные выводы активного фильтра 20 подключенные к конденсатору 13, автономный инвертор напряжения 6 на основе полностью управляемых полупроводниковых ключей 17, имеющий выходные выводы автономного инвертора напряжения 18, к которым через измерительный блок 3 подключены входные выводы асинхронного тягового двигателя 19 и асинхронный тяговый двигатель 7, и два входных вывода автономного инвертора напряжения 16, к которым параллельно подключены датчик напряжения 12, конденсатор 13, тормозной резистор 15, включенный последовательно с коммутатором 14 и выходные выводы неуправляемого диодного выпрямителя 11, систему управления 21, подключенную к измерительным блокам 3 и датчику напряжения 12, выводам управления полностью управляемых полупроводниковых ключей 17 и коммутатора 14.

Тяговый электропривод автономного транспортного средства фильтра работает следующим образом. В режиме тяги. Первичный дизельный двигатель 1 приводит во вращение вал трехфазного синхронного генератора переменного тока 2, переменное напряжение поступает на выходные выводы трехфазного синхронного генератора переменного тока 8, откуда через входные выводы неуправляемого выпрямителя 9, поступает на неуправляемый диодный выпрямитель 4 и активный фильтр 5. Неуправляемый диодный выпрямитель 4 за счет коммутации неуправляемых диодных ключей 10 преобразует переменное значение напряжения в постоянное, поступающее на конденсатор 13 и измеряемое датчиком напряжения 12, которое подается через входные выводы автономного инвертора напряжения 16 на автономный инвертор напряжения 6 и преобразуется в переменное напряжение, частота которого регулируется переключением полностью управляемых полупроводниковых ключей 17, измеряется измерительным блоком 3, и подевается на входные выводы асинхронного тягового двигателя 19 и далее на асинхронный тяговый двигатель 7, создающий крутящий момент. Работа неуправляемых диодных ключей 10 неуправляемого диодного выпрямителя 4 снижает коэффициент мощности и повышает коэффициент нелинейных искажений тока и напряжения системы трехфазный синхронный генератор переменного тока 2 - неуправляемый диодный выпрямитель 4, измерительный блок 3 измеряет значения тока и напряжения, поступающих на активный фильтр 5, активный фильтр 5 по средствам коммутации полностью управляемых полупроводниковых ключей 17 формирует требуемый ток коррекции, необходимый для поддержания максимального коэффициента мощности и минимального коэффициента нелинейных искажений тока и напряжения системы трехфазный синхронный генератор переменного тока 2 - неуправляемый диодный выпрямитель 4, поступающий от заряженного конденсатора 13. Система управления 21, получающая информацию от датчика напряжения 12 и измерительных блоков 3, содержащих датчики тока 23 и напряжения 12, формирует управляющие воздействия, подаваемые на выводы управления полностью управляемых полупроводниковых ключей 17 активного фильтра 5 и автономного инвертора напряжения 6, таким образом, чтобы активный фильтр 5 и автономный инвертор напряжения 6 обеспечивали максимальный коэффициент мощности сети и минимальный коэффициент нелинейных искажений тока и напряжения.

В режиме торможения. Ротор асинхронного тягового двигатели 7 вращается с частотой большей, чем частота переключения полностью управляемых полупроводниковых ключей 17 автономного инвертора напряжения 6, переводя асинхронный тяговый двигатель 7 в режим генератора. На входных выводах асинхронного тягового двигателя 19 формируется переменное напряжение, поступающее через автономный инвертор напряжения 6 на входные выводы автономного инвертора напряжения 16 и далее заряжающее конденсатор 13. При полном заряде конденсатора 13 от датчика напряжения 12 поступает сигнал на систему управления 21, системой управления 21 формируется управляющее воздействие, подаваемое на вывод управления коммутатора 14, включающим в цепь тормозной резистор 15.

Технико-экономическая эффективность предложения определяется тем, что повышается срок службы синхронного генератора за счет снижения влияния коэффициента нелинейных искажений тока и напряжения на изоляцию обмоток статора и ротора, снижается потребление топлива первичным двигателем за счет уменьшения массогабаритных параметров трансмиссии.

Похожие патенты RU2692288C1

название год авторы номер документа
ЭНЕРГОЭФФЕКТИВНЫЙ ТЯГОВЫЙ ЭЛЕКТРОПРИВОД АВТОНОМНОГО ТРАНСПОРТНОГО СРЕДСТВА 2017
  • Козярук Анатолий Евтихиевич
  • Камышьян Альберт Михайлович
RU2653945C1
ЭЛЕКТРОМЕХАНИЧЕСКАЯ ТРАНСМИССИЯ АВТОСАМОСВАЛА 2021
  • Малафеев Сергей Иванович
RU2757093C1
ТЯГОВЫЙ ЭЛЕКТРОПРИВОД 2015
  • Сувалко Владимир Юльянович
RU2619925C1
СПОСОБ РЕГУЛИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ ПЕРЕДАЧИ ТЕПЛОВОЗА В РЕЖИМЕ ТОРМОЖЕНИЯ 2012
  • Бабков Юрий Валерьевич
  • Грачев Николай Валерьевич
  • Клименко Юрий Иванович
  • Перфильев Константин Степанович
  • Романов Игорь Владимирович
  • Суркова Елена Геннадьевна
  • Троицкий Анатолий Пантелеевич
RU2501673C1
ЭЛЕКТРИЧЕСКАЯ ПЕРЕДАЧА МОЩНОСТИ ТЯГОВОГО ТРАНСПОРТНОГО СРЕДСТВА 2005
  • Луков Николай Михайлович
  • Ромашкова Оксана Николаевна
  • Космодамианский Андрей Сергеевич
  • Алейников Игорь Аркадьевич
RU2297090C1
ПРЕОБРАЗОВАТЕЛЬ ПОСТОЯННОГО НАПРЯЖЕНИЯ 2004
  • Солтус Константин Павлович
  • Сорин Леонид Наумович
  • Турулев Владимир Михайлович
RU2283529C2
СУДОВАЯ ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ СИСТЕМА 2008
  • Кувшинов Геннадий Евграфович
  • Коршунов Алексей Викторович
  • Коршунов Виктор Николаевич
RU2375804C2
АСИНХРОННЫЙ ВЕНТИЛЬНЫЙ КАСКАД 2011
  • Мещеряков Виктор Николаевич
  • Безденежных Даниил Владимирович
  • Башлыков Александр Михайлович
RU2474951C1
Электропривод 1991
  • Фокин Виталий Александрович
  • Фокин Олег Витальевич
SU1817221A1
ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ СИСТЕМА МОРСКОЙ БУРОВОЙ ПЛАТФОРМЫ 2017
  • Козярук Анатолий Евтихиевич
  • Станислав Алексеевич
RU2652286C1

Иллюстрации к изобретению RU 2 692 288 C1

Реферат патента 2019 года ТЯГОВЫЙ ЭЛЕКТРОПРИВОД АВТОНОМНОГО ТРАНСПОРТНОГО СРЕДСТВА

Изобретение относится к электрическим силовым установкам для транспортных средств. Тяговый электропривод автономного транспортного средства содержит синхронный генератор, преобразователь частоты с конденсатором фильтра в звене постоянного тока, автономный инвертор напряжения, асинхронный тяговый электродвигатель, тормозной резистор, измерительные блоки, активный фильтр и систему управления. Активный фильтр подключен через измерительный блок параллельно к входным выводам преобразователя частоты, выходные выводы которого подключены к конденсатору. Коммутатор соединен последовательно с тормозным резистором. Система управления подключена к измерительным блокам, датчику напряжения, активному фильтру и автономному инвертору напряжения. Техническим результатом является повышение энергетических показателей системы электропривода. 3 ил.

Формула изобретения RU 2 692 288 C1

Тяговый электропривод автономного транспортного средства, содержащий синхронный генератор, преобразователь частоты с конденсатором фильтра в звене постоянного тока, асинхронный тяговый электродвигатель, тормозной резистор, отличающийся тем, что он дополнительно содержит активный фильтр, подключенный через измерительный блок параллельно к входным выводам преобразователя частоты, выходные выводы которого подключены к конденсатору, коммутатор, соединенный последовательно с тормозным резистором, систему управления, подключенную к измерительным блокам, датчику напряжения, активному фильтру и автономному инвертору напряжения.

Документы, цитированные в отчете о поиске Патент 2019 года RU2692288C1

ЭНЕРГОЭФФЕКТИВНЫЙ ТЯГОВЫЙ ЭЛЕКТРОПРИВОД АВТОНОМНОГО ТРАНСПОРТНОГО СРЕДСТВА 2017
  • Козярук Анатолий Евтихиевич
  • Камышьян Альберт Михайлович
RU2653945C1
УСТРОЙСТВО КОМПЕНСАЦИИ ВЫСШИХ ГАРМОНИК И РЕКУПЕРАЦИИ ЭНЕРГИИ В СЕТЬ, АДАПТИРОВАННОЕ К ЭЛЕКТРОПРИВОДУ ПЕРЕМЕННОГО ТОКА 2017
  • Мещеряков Виктор Николаевич
  • Евсеев Алексей Михайлович
RU2657007C1
УСТРОЙСТВО КОМПЕНСАЦИИ ВЫСШИХ ГАРМОНИК И КОРРЕКЦИИ НЕСИММЕТРИИ СЕТИ 2014
  • Абрамович Борис Николаевич
  • Сычев Юрий Анатольевич
RU2573599C1
US 2017267108 A1, 21.09.2017.

RU 2 692 288 C1

Авторы

Козярук Анатолий Евтихиевич

Камышьян Альберт Михайлович

Большунова Ольга Михайловна

Коржев Александр Александрович

Даты

2019-06-24Публикация

2018-09-24Подача