ИНВЕРТНАЯ ПЫЛЕГАЗОВАЯ ПРИЗМАТИЧЕСКАЯ ТОПКА Российский патент 2019 года по МПК F23C1/12 F23C5/32 

Описание патента на изобретение RU2693281C1

Изобретение относится к области тепловой энергетики и может быть использовано на паровых котлах ТЭС.

Известна прямоугольная пылеугольная топка, содержащая экранированные вертикальные стены, потолок и скаты холодной воронки, горелки и воздушные сопла, установленные на больших вертикальных стенах и направленные тангенциально к поверхностям условных тел вращения с наклоном вниз (аналог: авторское свидетельство SU 1206555 А, опубликовано 23.01.86 в бюллетене №3). Недостатки прямоугольной пылеугольной топки-аналога заключаются в неравномерности тепловыделения по глубине топки и невозможности использования ее отличительных признаков на котлах с инвертными топками.

Наиболее близкими техническими решениями к заявленному устройству обладает пылеугольный котел-прототип, содержащий вертикальную инвертную топку квадратного сечения, экранированные ее ограждения, пылеугольные горелки и сопла вторичного воздуха - газовые горелки с горизонтальными осями, направленными тангенциально к поверхностям условных тел вращения и установленными в угловых зонах вертикальных стен, а также двухъярусные горизонтально направленные сопла третичного воздуха, размещенные в нижерасположенной зоне на двух ее вертикальных ограждениях (см. инвертную топку пылеугольного котла-прототипа в статье Шварца А.Л. и др. «Разработка технических решений по пылеугольному котлу энергоблока 800 МВт на параметры пара 35 МПа, 700/720°С», Теплоэнергетика № 12, 2015 г., с. 56-60, рис. 1 на стр. 57). Недостаток инвертной топки пылеугольного котла-прототипа заключается в концентрированном факеле в приосевой зоне топки, неэкономичном сжигании угольной пыли, что связано с неудовлетворительным перемешиванием струй третичного воздуха, особенно нижнего яруса, с продуктами сгорания из-за горизонтальной направленности этих струй и недостаточной скорости их истечения. В результате этого возможны повышенный недожог топлива, возрастание температуры продуктов сгорания на выходе из топки, что приводит к шлакованию первой по ходу продуктов сгорания поверхности пароперегревателя. Кроме того, недостатком инвертной топки котла-прототипа является повышенный уровень образования оксидов азота, причем это вызывает необходимость использования установки селективного каталитического восстановления для снижения выбросов NOx.

Техническая задача данного изобретения состоит в устранении указанных недостатков инвертной топки пылеугольного котла-прототипа. Это достигается тем, что заявляемая инвертная пылегазовая призматическая топка, как и в прототипе, содержит экранированные вертикальные стены, торцевое ограждение и холодную воронку, пылеугольные горелки и воздушные сопла - газовые горелки, установленные на вертикальных стенах и направленные тангенциально к вертикальным поверхностям условных тел вращения. В отличие от топки котла-прототипа инвертная пылегазовая призматическая топка содержит пылеугольные горелки, воздушные сопла - газовые горелки, которые размещены по встречно-смещенной схеме на двух больших ее стенах и направлены наклонно вверх, причем пылеугольные горелки, установлены под соплами вторичного воздуха - газовыми горелками и наклонены вверх на больший угол по сравнению с ними, напротив сопл вторичного воздуха - газовых горелок размещены сопла экранирующего воздуха и наклонены вверх на угол, который не меньше угла наклона сопл вторичного воздуха - газовых горелок, сопла третичного воздуха, размещены под соплами экранирующего воздуха, не выше уровня установки пылеугольных горелок, а продолжения их осей в пределах топки направлены на пересечение продолжения осей пылеугольных горелок противоположной стены в точках, находящихся на расстоянии вдоль осей не более 5d от пылеугольных горелок, где d - эквивалентный диаметр последних.

Инвертная пылегазовая топка иллюстрирована фиг. 1, 2. На фиг. 1 показана компоновка горелок и сопл в одном вертикальном сечении инвертной пылегазовой призматической топки, а на фиг. 2 - разрез по А-А фиг. 1, в котором схематически показана компоновка горелок и сопл в горизонтальной проекции топки. Инвертная пылегазовая призматическая топка содержит экранированные вертикальные стены 1, верхнее торцевое ограждение 2 и скаты холодной воронки (на фиг. 1 не показаны), пылеугольные горелки 3, а также сопла вторичного воздуха 4 - газовые горелки 5, сопла экранирующего воздуха 6, сопла третичного воздуха 7, причем топочные устройства всех указанных наименований направлены тангенциально к поверхностям условных тел вращения и установлены по встречно-смещенной схеме на больших стенах 1. Пылеугольные горелки 3, установлены под соплами вторичного воздуха 4 - газовыми горелками 5 и наклонены вверх на больший угол, чем последние, в данном случае на 60° против 20°. Сопла экранирующего воздуха 6, размещены напротив сопл вторичного воздуха 4 - газовых горелок 5 и наклонены вверх на 5-10° больше них, под соплами экранирующего воздуха не выше уровня установки пылеугольных горелок 3 установлены сопла третичного воздуха 7, причем продолжения их осей в пределах топки направлены на пересечение продолжения осей пылеугольных горелок 3 противоположной стены 1 в точках 12, находящихся на расстоянии вдоль осей не более 5d от пылеугольных горелок 3, где d - эквивалентный диаметр пылеугольных горелок 3. Вентиляторы горячего дутья 13 подсоединены по всасывающей стороне к выходным коллекторам воздушных подогревателей с помощью коробов, снабженных отключающими шиберами (что на фиг. 1 не показано).

Пылегазовая топка, имеющая в данном случае габаритные размеры 11000×34000 мм и размеры топочных устройств, которые соответствуют котлу энергоблока 800 МВт, работает при сжигании угля следующим образом. Пылевоздушная смесь 9 поступает по пылепроводам в пылеугольные горелки 3 из углеразмольных мельниц (на фиг. 1 не показаны) с существенным недостатком воздуха. Недостающий для полного выгорания угольной пыли воздух подводится в факелы пылеугольных горелок 3 ступенями по ходу их движения: сначала из сопел вторичного воздуха 4 - газовых горелок 5, имеющих размеры ∅920×10 мм, затем из сопел экранирующего воздуха 6 с размерами ∅630×7 мм, струи которых защищают вертикальные стены 1 и торцевое ограждение 2 от чрезмерного локального динамического давление факела, и, наконец, из сопел третичного воздуха 7. В случае отключения мельниц и пылеугольных горелок 3 охлаждение их каналов ∅720×10 мм, осуществляется горячим воздухом 10, поступающим в топку через каналы охлаждения 8, имеющие размеры 1200×750 мм. Благодаря встречно-смещенному, тангенциально направленному и наклонному вверх истечению струй из пылеугольных горелок 3, сопел вторичного воздуха 4 - газовых горелок 5, сопел экранирующего воздуха 6 и третичного воздуха 7 осуществляется рассредоточенное в объеме верхней части топки и экономичное ступенчатое сжигание угольной пыли. Целесообразно, чтобы сопла экранирующего воздуха 6 были повернуты по горизонтали, как это показано на фиг. 2, на угол arctang 2D/B, где D - диаметр условных тел вращения, В - глубина топки, равная в данном случае 11000 мм. При этом исключается локальное шлакование экранированных стен 1, в том числе боковых стен, а также торцевого ограждения 2. За счет ступенчатого сжигания при низком избытке первичного воздуха обеспечивается подавление образования топливных и термических NOx по ходу движения отдельных факелов пылеугольных горелок 3. Глубокое подавление образования топливных NOx, составляющих превалирующую долю в суммарном выбросе NOx, обеспечивается подводом третичного воздуха в смеси с эжектированными топочными газами, содержащими продукты недожога, в корень струй пылевоздушной смеси с осевой длиной не более 5d, где d - эквивалентный диаметр пылеугольных горелок 3.

При сжигании резервного топлива - природного газа топка работает аналогично. В этом случае первичный воздух в смеси с природным газом поступает в топку с существенным недостатком воздуха из газовых горелок 5. Недостающий для полного его выгорания воздух подмешивается ступенями по ходу движения факелов газовых горелок 5 из каналов охлаждения 8 пылеугольных горелок 3, из сопел экранирующего воздуха 6 и третичного воздуха 7. При этом надежность, экономическая и экологическая эффективности ступенчатого сжигания природного газа обеспечиваются за счет встречно-смещенного, тангенциально направленного и наклоненного вверх движения соответствующих струй.

В варианте исполнения инвертная пылегазовая призматическая топка оборудована соплами третичного воздуха 7, имеющими прямоугольные и вытянутые по вертикали сечения с размерами в данном случае 1500×390 мм и снабжаемыми горячим воздухом 11 с помощью центробежных нагнетателей (вентиляторов горячего дутья) 13, соединенных по всасывающей стороне с выходными коробами воздушного подогревателя с помощью коробов, снабженных отключающими шиберами (что на фиг. 1 не показано). В этом случае прямоугольные струи третичного воздуха на выходе из сопел 7 отличаются большей устойчивостью против их выноса вниз продуктами сгорания, т.е. большей дальнобойностью, а также характеризуются повышенной эжекционной способностью из-за высоких скоростей их истечения.

Использование заявленной инвертной пылегазовой призматической топки обеспечит высокую надежность, экономичность и экологическую эффективность ступенчатого сжигания угольной пыли и природного газа.

Похожие патенты RU2693281C1

название год авторы номер документа
ПЫЛЕГАЗОМАЗУТНАЯ ТОПКА 2015
  • Архипов Александр Михайлович
  • Киричков Владимир Сергеевич
  • Канунников Александр Анатольевич
  • Прохоров Вадим Борисович
  • Фоменко Михаил Вячеславович
RU2597346C1
ПЫЛЕУГОЛЬНЫЙ КОТЕЛ 2016
  • Рогалев Николай Дмитриевич
  • Рогалев Андрей Николаевич
  • Архипов Александр Михайлович
  • Прохоров Вадим Борисович
  • Чернов Сергей Львович
  • Киричков Владимир Сергеевич
  • Фоменко Михаил Васильевич
RU2615556C1
ПЫЛЕУГОЛЬНАЯ ТОПКА 2014
  • Архипов Александр Михайлович
  • Зройчиков Николай Алексеевич
  • Прохоров Вадим Борисович
  • Каверин Александр Александрович
RU2566548C1
Пылеугольная топка 1989
  • Срывков Сергей Васильевич
  • Котлер Владлен Романович
  • Маршак Юрий Леонидович
  • Шишканов Олег Георгиевич
SU1666857A1
ТОПКА КОТЛА 1995
  • Осинцев В.В.
  • Кузнецов Г.Ф.
  • Петров В.В.
  • Воронин В.П.
  • Сухарев М.П.
RU2079047C1
ПЫЛЕУГОЛЬНАЯ ТОПКА 1991
  • Архипов А.М.
  • Медведицков А.Н.
  • Волков Э.П.
  • Липов Ю.М.
  • Сидоров А.Л.
  • Ефремов В.П.
  • Бочкарев В.П.
  • Вахитов Б.Б.
RU2006740C1
ВЕРТИКАЛЬНАЯ ПРИЗМАТИЧЕСКАЯ ТОПКА И СПОСОБ ЕЕ РАБОТЫ 2008
  • Осинцев Владимир Валентинович
  • Торопов Евгений Васильевич
  • Осинцев Константин Владимирович
RU2370701C1
ПРИЗМАТИЧЕСКАЯ ЭКРАНИРОВАННАЯ ТОПКА 1992
  • Срывков С.В.
  • Процайло М.Я.
  • Дектерев А.А.
  • Козлов С.Г.
  • Пронин М.С.
  • Ковалевский А.М.
  • Попов В.П.
RU2032853C1
ТОПКА 1991
  • Архипов А.М.
  • Медведицков А.Н.
  • Волков Э.П.
  • Липов Ю.М.
  • Сидоров А.Л.
  • Ефремов В.П.
  • Бочкарев В.П.
  • Вахитов Б.Б.
RU2006741C1
СПОСОБ СЖИГАНИЯ ТОПЛИВА 2001
  • Тверской Ю.С.
  • Андреев Ю.В.
  • Андреев Н.В.
  • Тверской Д.Ю.
RU2233404C2

Иллюстрации к изобретению RU 2 693 281 C1

Реферат патента 2019 года ИНВЕРТНАЯ ПЫЛЕГАЗОВАЯ ПРИЗМАТИЧЕСКАЯ ТОПКА

Изобретение относится к области тепловой энергетики и может быть использовано на паровых котлах ТЭС. Пылегазовая призматическая топка содержит экранированные вертикальные стены, верхнее торцевое ограждение и скаты холодной воронки, пылеугольные горелки, а также воздушные сопла, установленные на двух больших стенах и направленные тангенциально к поверхностям условных тел вращения. Пылеугольные горелки, а также воздушные сопла размещены на больших ее стенах по встречно-смещенной схеме и направлены наклонно вверх, причем пылеугольные горелки, установлены под соплами вторичного воздуха - газовыми горелками и наклонены вверх на больший угол по сравнению с ними, напротив сопел вторичного воздуха - газовых горелок размещены сопла экранирующего воздуха и наклонены вверх на угол, который не меньше угла наклона сопел вторичного воздуха - газовых горелок, под соплами экранирующего воздуха, но не выше уровня установки пылеугольных горелок, размещены сопла третичного воздуха, причем продолжения их осей в пределах топки направлены на пересечение продолжения осей пылеугольных горелок противоположной стены в точках, находящихся на расстоянии не более 5d от пылеугольных горелок вдоль их осей, где d - эквивалентный диаметр пылеугольных горелок. Технический результат - устранение недожога топлива и уменьшение выброса NOх в пылеугольных энергоблоках повышенной мощности 800 МВт. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 693 281 C1

1. Инвертная пылегазовая призматическая топка, содержащая экранированные вертикальные стены, верхнее торцевое ограждение и скаты холодной воронки, пылеугольные горелки, а также воздушные сопла, установленные на двух больших стенах и направленные тангенциально к поверхностям условных тел вращения, отличающаяся тем, что пылеугольные горелки, а также воздушные сопла размещены на больших ее стенах по встречно-смещенной схеме и направлены наклонно вверх, причем пылеугольные горелки, установлены под соплами вторичного воздуха - газовыми горелками и наклонены вверх на больший угол по сравнению с ними, напротив сопел вторичного воздуха - газовых горелок размещены сопла экранирующего воздуха и наклонены вверх на угол, который не меньше угла наклона сопл вторичного воздуха - газовых горелок, под соплами экранирующего воздуха, но не выше уровня установки пылеугольных горелок, размещены сопла третичного воздуха, причем продолжения их осей в пределах топки направлены на пересечение продолжения осей пылеугольных горелок противоположной стены в точках, находящихся на расстоянии не более 5d от пылеугольных горелок вдоль их осей, где d - эквивалентный диаметр пылеугольных горелок.

2. Инвертная пылегазовая призматическая топка по п. 1, отличающаяся тем, что сопла третичного воздуха выполнены прямоугольного вытянутого по вертикали сечения и снабжены подводящими воздуховодами от напорных коллекторов вентиляторов горячего дутья, которые подключены по всасывающей стороне к выходным коллекторам воздушных подогревателей с помощью коробов, снабженных отключающими шиберами.

Документы, цитированные в отчете о поиске Патент 2019 года RU2693281C1

ТОПКА 1993
RU2050507C1
ТОПКА 1996
RU2116563C1
ТОПКА 2008
  • Архипов Александр Михайлович
  • Путилов Вячеслав Яковлевич
  • Соловьёв Николай Иванович
RU2377466C1
Способ ускоренного пуска блока котел- турбина тепловой станции 1956
  • Крушель Г.Е.
  • Прокопенко А.Г.
SU109527A1

RU 2 693 281 C1

Авторы

Архипов Александр Михайлович

Киричков Владимир Сергеевич

Канунников Александр Анатольевич

Прохоров Вадим Борисович

Чернов Сергей Львович

Даты

2019-07-02Публикация

2018-10-24Подача