Крыло летательного аппарата Российский патент 2019 года по МПК B64C3/10 

Описание патента на изобретение RU2693389C1

Предлагаемое изобретение относится к авиационной технике, в частности, к несущим элементам летательного аппарата и может быть использовано при проектировании крыльев дозвуковых самолетов различного назначения, в том числе легких реактивных и административных самолетов с пониженным уровнем шума на местности и расширенным диапазоном условий базирования.

В настоящее время динамика приоритетов в гражданской авиации такова, что наряду с необходимостью обеспечения безопасности, высокого уровня аэродинамического качества и топливной эффективности, выдвигаются вопросы экологии и охраны окружающей среды. Применительно к дозвуковым самолетам, прежде всего уровень шума на местности и в районе аэропорта и выбросы продуктов сгорания двигателей.

Известны различные технические решения крыльев современных пассажирских самолетов. Типичное крыло пассажирского самолета состоит из центроплана, консоли и необходимых функциональных систем, таких как пилоны, мотогондолы двигателя и другие элементы конструкции самолета, влияющие на обтекание крыла.

Известно несколько примеров самолетов с аналогичным предлагаемому крылом.

Известен самолет НА-420 Honda Jet с крылом, разработанный компанией Honda. Мотогондолы двигателей установлены на крыле на пилоне. Самолет предназначен для перевозки до 8 пассажиров на расстояние до 2040км с максимальной скоростью 790 км/ч (см. патент US D469054 S1 от 21 января 2003 года). Недостатком этого самолета является малая дальность, как следствие низкая топливная эффективность.

Известен легкий административный самолет Embraer Phenon 300, со стреловидным крылом, разработанный бразильской фирмой Embraer (см. интернет-сайты www. Business-jet.ru, www. Embraer.com, информация от 22.06.2008). Самолет предназначен для перевозки до 10 пассажиров на расстояние до 3300 км с максимальной скоростью 834 км/ч.

Известно принятое за прототип стреловидное крыло (Патент РФ №2314971, МПК В64С 3/10, опуб. 20.01.2008 г.) с удлинением λ=9-11 и сужением η|=3.5-4.2. Крыло сформировано как единая пространственная система на базе прямого крыла, имеющего нулевую стреловидность по заднему лонжерону, и передним наплывом с единым базовым профилем.

Общими недостатками для всех рассмотренных выше компоновок является: относительно большие потери аэродинамического качества при числе Маха М>0,75, вызванные влиянием элементов конструкции самолета (пилонов, мотогондол и других элементов), и как следствие, образование нестационарных аэродинамических взаимодействий которые могут приводить к преждевременному отрыву потока на верхней поверхности крыла; уменьшение предельно допустимого значения коэффициента подъемной силы (Судоп) и, следовательно, снижению безопасности полета; изменению режимов работы двигателя, влияющих на несущие свойства самолета и, следовательно, на топливную эффективность.

Задачей и техническим результатом настоящего изобретения является разработка конструкции крыла, позволяющая снизить вредное влияние элементов крыла, увеличить уровень аэродинамического качества, показатель топливной эффективности и величину предельно допустимого значения коэффициента подъемной силы, а также снизить уровень шума на местности за счет экранирующего воздействия планера самолета на дозвуковых скоростях полета М=0.8-0.85.

Решение поставленной задача и технический результат достигаются тем, что в крыле, содержащем центроплан и консоль, выполненным с удлинением λ=8+11, сужением η|=3.0+4.2 и содержащем сверхкритические профили, передняя кромка при виде сверху в области от 0 до 25% размаха крыла выполнена с изломом и наплывом, задняя кромка выполнена прямолинейной, относительные толщины профилей крыла меняются от 15-17% в бортовом сечении до 10+11% в концевых сечениях крыла, с меняющейся по размаху законом распределения геометрической крутки от 8=0.0+0.5° в бортовых сечениях до -0.1+-1.0° в концевых сечениях.

На фиг. 1 показан общий вид стреловидного крыла,

на фиг. 2 - типовой профиль крыла,

на фиг. 3 - характерные величины распределение давления в сечениях крыла,

на фиг. 4 — изменение аэродинамического качества и критерия топливной эффективности от числа Маха крейсерского полета.

Крыло летательного аппарата 1 (Фиг. 1) состоит из центроплана 2 и консоли 3, выполнено с удлинением λ=8+11 и сужением η|=3+4.5, передняя кромка 4 при виде сверху в области от 0 до 25% размаха крыла выполнена с изломом 5 и наплывом 6, задняя кромка 7 выполнена прямолинейной. Относительная толщина профилей имеет величину порядка 15-46% в бортовом сечении 8 и уменьшается до 10+11% в концевом сечении 9 (Фиг. 1) с практически неизменным значением на участке от 75% размаха крыла и до его конца. Крыло летательного аппарата 1 спроектировано с положительной закрученностью ε=0.0+0.5° в бортовом сечении, концевые сечения спроектированы с отрицательной закрученностью ε=-0.1+-1.0°, закон изменение крутки по размаху имеет практически линейный убывающий характер.

Крыло содержит сверхкритические профили 10 (Фиг. 2), обеспечивающие реализацию необходимых значений коэффициентов момента тангажа и сопротивления во всем диапазоне эксплуатационных режимов.

Крыло сформировано по пяти базовым сечениям, полученным при помощи многоэтапной процедуры аэродинамического проектирования, (учитывающего влияние на обтекание крыла на режиме М>0,75 таких элементов конструкции, как пилоны, мотогондолы и другие элементы крыла) состоящей из этапа начального выбора геометрии, этапа решения обратной задачи и этапа многорежимной оптимизации на 10 режимах полета. Установленные в системе крыла базовые сечения позволяют обеспечить в расчетных условиях достаточно равномерное распределение местного коэффициента подъемной силы сечений вдоль размаха крыла,

Был выполнен ряд расчетных исследований, в полном диапазоне крейсерских режимов полета. Результаты расчетов показали, что предлагаемое крыло имеет благоприятный характер обтекания (фиг. 3) верхней поверхности крыла во всем эксплуатационном диапазоне углов атаки и чисел Маха М.

Были выполнены экспериментальные исследования предлагаемого крыла. Результаты исследований показали, что предлагаемое крыло летательного аппарата может обеспечить величину аэродинамического качества Кмах~16 в условиях аэродинамической трубы. По сравнению с эксплуатируемыми аналогами и прототипом позволяет обеспечить дополнительное увеличение аэродинамического качества АКмах ~ 0.1+1.1 в диапазоне чисел Маха М 0.78+0.85 и топливной эффективности ΔКмах*М ~ 0.1+0.75 (Фиг.4) и, как следствие, снижение расхода топлива и увеличение безопасности полета и повысить величину предельно допустимого значения коэффициента подъемной силы (Судоп) на 2+4%.

Предлагаемое техническое решение направлено на достижение высокого уровня аэродинамического совершенства, скорости полета, кроме того оно может быть использовано для снижения уровня шума на местности за счет возможности установки мотогондол двигателя на пилоне в хвостовой части фюзеляжа выше верхней поверхности крыла, обеспечивающее экранирующее воздействие от планера при сохранении высокой крейсерской скорости полета самолета (М~0,8).

Важнейшими преимуществами предлагаемого решения так же являются возможность расширения условий базирования за счет увеличения клиренса, защищенность двигателей от повреждения посторонними предметами с ВПП; благоприятные возможности для применения управляемого вектора тяги (улучшение топливной эффективности).

Таким образом, удается создать крыло летательного аппарата, обладающее следующими преимуществами:

- высокие аэродинамическое качество и топливная эффективность на дозвуковых скоростях полета Мкрейс=0.78-К).85.

Использование прямого крыла упрощает и облегчает конструкцию, позволяет получить высокие взлётно-посадочные характеристики при отсутствии предкрылка и обеспечивает естественную ламинаризацию обтекания поверхности.

Похожие патенты RU2693389C1

название год авторы номер документа
Крыло летательного аппарата 2019
  • Болсуновский Анатолий Лонгенович
  • Бузоверя Николай Петрович
  • Брагин Николай Николаевич
  • Сахарова Анна Игоревна
  • Чернышев Иван Леонидович
  • Янин Виталий Викторович
RU2724015C1
Крыло летательного аппарата 2020
  • Болсуновский Анатолий Лонгенович
  • Бузоверя Николай Петрович
  • Брагин Николай Николаевич
  • Губанова Ирина Анатольевна
  • Чернышев Иван Леонидович
  • Пущин Никита Александрович
RU2772846C2
Крыло летательного аппарата 2019
  • Болсуновский Анатолий Лонгенович
  • Бузоверя Николай Петрович
  • Брагин Николай Николаевич
  • Пущин Никита Александрович
  • Скоморохов Сергей Иванович
  • Чернышев Иван Леонидович
RU2717412C1
Крыло летательного аппарата 2017
  • Болсуновский Анатолий Лонгенович
  • Бузоверя Николай Петрович
  • Брагин Николай Николаевич
  • Курилов Владимир Борисович
  • Скоморохов Сергей Иванович
  • Чернышев Иван Леонидович
  • Губанова Ирина Анатольевна
RU2662595C1
Крыло летательного аппарата 2018
  • Болсуновский Анатолий Лонгенович
  • Брагин Николай Николаевич
  • Пейгин Сергей Владимирович
RU2683404C1
Крыло летательного аппарата 2018
  • Болсуновский Анатолий Лонгенович
  • Брагин Николай Николаевич
  • Пейгин Сергей Владимирович
RU2686794C1
Крыло летательного аппарата 2019
  • Болсуновский Анатолий Лонгенович
  • Бузоверя Николай Петрович
  • Брагин Николай Николаевич
  • Герасимов Сергей Венедиктович
  • Губанова Ирина Анатольевна
  • Чернышев Иван Леонидович
RU2717416C1
Крыло летательного аппарата 2018
  • Болсуновский Анатолий Лонгенович
  • Брагин Николай Николаевич
  • Пейгин Сергей Владимирович
RU2679104C1
Крыло летательного аппарата 2018
  • Болсуновский Анатолий Лонгенович
  • Брагин Николай Николаевич
  • Пейгин Сергей Владимирович
RU2686784C1
Крыло летательного аппарата 2019
  • Болсуновский Анатолий Лонгенович
  • Брагин Николай Николаевич
  • Пейгин Сергей Владимирович
RU2713579C1

Иллюстрации к изобретению RU 2 693 389 C1

Реферат патента 2019 года Крыло летательного аппарата

Изобретение относится к крыльям дозвуковых самолетов. Крыло летательного аппарата состоит из центроплана и консоли, выполнено с удлинением λ=8÷11, сужением η=3.0÷4.5 и имеет сверхкритические профили. Передняя кромка при виде сверху в области от 0 до 25% размаха крыла выполнена с изломом и наплывом, задняя кромка выполнена прямолинейной, относительные толщины профилей крыла меняются от 15÷17% в бортовом сечении до 10÷11% в концевых сечениях крыла, с меняющимся по размаху законом распределения геометрической крутки от 0.0-0.5° в бортовых сечениях до -0.1÷-1.0° в концевых сечениях. Крыло позволит увеличить максимальное аэродинамическое качество ΔКмах≈0.1÷1.1 и улучшить показатель топливной эффективности на 3÷7%. Изобретение направлено на повышение взлетно-посадочных характеристик при отсутствии предкрылка и обеспечение естественной ламинаризации обтекания поверхности. 4 ил.

Формула изобретения RU 2 693 389 C1

Крыло летательного аппарата, содержащее центроплан и консоль, выполненное с удлинением λ=8÷11, сужением η=3.0÷4.5, отличающееся тем, что крыло содержит сверхкритические профили, передняя кромка при виде сверху в области от 0 до 25% размаха крыла выполнена с изломом и наплывом, задняя кромка выполнена прямолинейной, относительные толщины профилей крыла меняются от 15÷17% в бортовом сечении до 10÷11% в концевых сечениях крыла, с меняющимся по размаху законом распределения геометрической крутки от ε=0.0÷0.5° в бортовых сечениях до (-0.1)÷(-1.0)° в концевых сечениях.

Документы, цитированные в отчете о поиске Патент 2019 года RU2693389C1

КРЫЛО ЛЕТАТЕЛЬНОГО АППАРАТА И ПОДКРЫЛЬЕВОЙ ПИЛОН 2006
  • Субботин Виктор Владимирович
  • Ивашечкин Юрий Викторович
  • Курьянский Михаил Кириллович
  • Коваленко Евгений Николаевич
  • Светлов Максим Владимирович
  • Терехин Владимир Алексеевич
  • Шевяков Владимир Иванович
  • Гудилин Дмитрий Анатольевич
  • Бабулин Андрей Александрович
  • Цыганков Анатолий Сергеевич
  • Каталов Андрей Николаевич
  • Скоморохов Сергей Иванович
  • Бузоверя Николай Петрович
  • Чернышев Иван Леонидович
  • Баринов Владимир Акиндинович
  • Болсуновский Анатолий Лонгенович
RU2312791C1
US 0004455003 A1, 19.06.1984
WO 1988009745 A1, 15.12.1988.

RU 2 693 389 C1

Авторы

Болсуновский Анатолий Лонгенович

Бузоверя Николай Петрович

Брагин Николай Николаевич

Скоморохов Сергей Иванович

Чернышев Иван Леонидович

Даты

2019-07-02Публикация

2018-09-13Подача