УСТРОЙСТВО ДЛЯ ПЕРЕКЛЮЧЕНИЯ ПОСТОЯННОГО ТОКА В ПОЛЮСЕ СЕТИ ПОСТОЯННОГО НАПРЯЖЕНИЯ Российский патент 2019 года по МПК H01H33/59 

Описание патента на изобретение RU2695800C1

Изобретение относится к устройству для переключения постоянного тока в полюсе сети постоянного напряжения.

Увеличивающаяся во всем мире потребность в энергии и одновременно желаемое уменьшения выброса СО2, делают все более привлекательными источники возобновляемой энергии. Источниками возобновляемой энергии являются, например, установленные на стороне моря ветросиловые установки или фотогальванические энергетические установки в богатых солнцем областях пустынь. Для обеспечения возможности экономичного использования создаваемой так энергии, все большее значение приобретает соединение источников возобновляемой энергии с энергетической системой страны. На этом фоне все больше обсуждается создание и эксплуатация сложных сетей постоянного напряжения. Однако предпосылкой для этого является возможность быстрого и надежного отключения токов короткого замыкания, которые могут возникать в такой сложной сети постоянного напряжения. Но для этого требуются переключатели постоянного напряжения, которые в настоящее время не имеются в распоряжении на рынке. Из уровня техники известны различные концепции для таких переключателей постоянного напряжения.

В WO 2011/057675 А1 приведено описание переключателя постоянного напряжения, который имеет рабочий путь тока с механическим переключателем, а также ветвь отключения, которая включена параллельно рабочему пути тока. В ветви отключения расположена последовательная схема силовых полупроводниковых переключателей, встречно-параллельно которым включен соответствующий безынерционный диод. Состоящие из силовых полупроводниковых переключателей и безынерционного диода переключательные блоки расположены встречно-последовательно, при этом выключаемые силовые полупроводниковые переключатели расположены последовательно, и для каждого силового полупроводникового переключателя предусмотрен соответствующий силовой полупроводниковый переключатель с противоположным направлением пропускания. Таким образом, в ветви отключения ток может прерываться в обоих направлениях. В рабочем пути тока, наряду с механическим переключателем, расположен также электронный вспомогательный переключатель последовательно с механическим переключателем. При нормальной работе ток проходит через рабочий путь тока и тем самым через электронный вспомогательный переключатель, а также через замкнутый механический переключатель, поскольку силовые полупроводниковые переключатели ветви отключения представляют повышенное сопротивление для постоянного тока. Для прерывания, например тока короткого замыкания, электронный вспомогательный переключатель переводится в свое положение размыкания. За счет этого увеличивается сопротивление в рабочем пути тока, так что постоянный ток переводится в ветвь отключения. Поэтому быстрый механический разделительный переключатель может размыкаться без тока. Направляемый через ветвь отключения ток короткого замыкания может прерываться с помощью силовых полупроводниковых переключателей. Для приема накопленной в сети постоянного напряжения и подлежащей отводу при переключении энергии предусмотрены разрядники, которые включены параллельно соответствующим силовым полупроводниковым переключателям.

В DE 694 08 811 Т2 приведено описание переключателя постоянного напряжения, в котором два механических переключателя включены последовательно. Состоящая из обоих механических переключателей последовательная схема защищена от перенапряжений с помощью разрядников, а также конденсатора. Лишь параллельно одному механическому переключателю включен включаемый и выключаемый силовой полупроводниковый переключатель. При размыкании механического переключателя возникает электрическая дуга. Падающее на электрической дуге напряжение зажигает силовой полупроводниковый переключатель, за счет чего происходит короткое замыкание параллельного разомкнутого механического переключателя. Электрическая дуга гаснет. Проходящий через силовой полупроводниковый переключатель ток может теперь прерываться посредством соответствующего управления силовым полупроводниковым переключателем.

В WO 2011/141055 раскрыт силовой полупроводниковый переключатель, который может последовательно включаться в полюс сети постоянного тока высокого напряжения. Переключатель постоянного напряжения состоит из механического переключателя, включенного последовательно с силовым полупроводниковым переключателем, параллельно которому, в свою очередь, включен противоположно безынерционный диод. Параллельно последовательной схеме из силового полупроводникового переключателя и механического переключателя включены последовательная схема из катушки и конденсатора, т.е. ветвь LC, и разрядник, который ограничивает падающее на ветви LC напряжение. Также параллельно силовому полупроводниковому переключателю включен разрядник. После размыкания механического переключателя включается и выключается силовой полупроводниковый переключатель с собственной частотой ветви LC. За счет этого создается колебание и в конечном итоге переход через ноль в механическом переключателе, так что может гаситься возникающая электрическая дуга.

Задачей изобретения является создание устройства указанного вначале вида, с помощью которого могут надежно и экономично выключаться аварийные токи в сети постоянного напряжения, при этом одновременно при нормальной работе возникают небольшие потери.

Задача решена, согласно изобретению, с помощью переключателя постоянного напряжения с первой и второй узловой точкой для включения последовательно в один полюс линии постоянного напряжения и с третьей узловой точкой для соединения с другим полюсом линии постоянного напряжения, дополнительно содержащего:

- расположенный между первой и второй узловой точкой механический переключатель,

- по меньшей мере один расположенный между первой и второй узловой точкой параллельно механическому переключателю модуль импульсного тока,

при этом модуль импульсного тока

- имеет три узловые точки модуля, и первая узловая точка модуля соединена с первой узловой точкой, и вторая узловая точка модуля соединена со второй узловой точкой, и третья узловая точка модуля соединена с третьей узловой точкой;

- содержит четыре полупроводниковых переключателя, которые включены в виде моста из двух последовательных схем, из двух полупроводниковых переключателей каждая, при этом потенциальные точки между полупроводниковыми переключателями обеих последовательных схем соответствуют первой и второй узловой точке модуля, и наружные концы обеих последовательных схем из соответствующих двух полупроводниковых переключателей соединены попарно в четвертую и пятую узловую точку модуля;

- содержит конденсатор импульсного тока, который включен параллельно обеим последовательным схемам из соответствующих двух полупроводниковых переключателей;

- содержит переключаемый полупроводниковый элемент между пятой и третьей узловой точкой модуля.

При этом полупроводниковые переключатели выполнены каждый в виде по меньшей мере одного включаемого и выключаемого силового полупроводникового переключателя, т.е. IGBT, IGCT, GTO или т.п., при необходимости с соответствующим противоположно направленным безынерционным диодом. Естественно, что вместо одного единственного силового полупроводникового переключателя можно использовать также синхронно управляемую последовательную схему из силовых полупроводниковых переключателей. Синхронно управляемые силовые полупроводниковые переключатели последовательной схемы в этом случае работают точно так же, как отдельный силовой полупроводниковый переключатель.

Если переключатель постоянного напряжения готов к работе, то может, например, прерываться ток короткого замыкания. При нормальной работе постоянный ток проходит через механический переключатель почти без потерь. В случае неисправности механический переключатель размыкается и два диагонально лежащих полупроводниковых переключателя модуля импульсного тока включаются. За счет разделения контактов механического переключателя, когда не предусмотрены другие меры, зажигается электрическая дуга. Однако включение полупроводниковых переключателей в идеальном случае полностью подавляет электрическую дугу. За счет открывания переключателей создается путь тока для накопленного в конденсаторе импульсного тока заряда, за счет чего механический переключатель проходит через нулевую точку тока, за счет чего предотвращается или гасится электрическая дуга. Предпочтительно, с помощью переключателя постоянного напряжения может прерываться прохождение тока в обоих направлениях.

Индуктивно накопленная энергия сети постоянного напряжения отводится на первой стороне переключателя постоянного напряжения через путь тока, который проходит через один не включенный полупроводниковый переключатель и конденсатор импульсного тока к третьей узловой точке, т.е. к другому полюсу сети постоянного напряжения.

Предпочтительно, когда переключатель постоянного напряжения имеет безынерционный диод между третьей и первой узловой точкой и другой безынерционный диод между третьей и второй узловой точкой. За счет этого предпочтительно обеспечивается уменьшение индуктивно накопленной энергии сети постоянного напряжения.

Для согласования с рабочим напряжением и рабочим током сети постоянного напряжения, переключатель постоянного напряжения может содержать несколько модулей импульсного тока. При этом они включены последовательно своими первыми и вторыми узловыми точками. Само это последовательное включение расположено в этом случае между первой и второй узловой точкой. Количество модулей импульсного тока зависит от соответствующих требований. Во всяком случае модули импульсного тока должны быть способны принимать прикладываемые напряжения, а также надежно и достаточно быстро отключать большие токи короткого замыкания.

Целесообразно, переключатель постоянного напряжения содержит включенное последовательно конденсатору сопротивление для ограничения тока зарядки. В качестве переключаемого полупроводникового переключателя в модуле импульсного тока предпочтительно применяется тиристор.

Целесообразно, переключатель постоянного напряжения содержит управляющий блок, который предназначен для открывания механического переключателя для отделения линии постоянного напряжения и для включения двух из четырех полупроводниковых переключателей для создания направленного противоположно току в линии постоянного напряжения импульса тока.

В одном варианте выполнения, накопленная в сети постоянного напряжения и высвобождаемая при выключении энергия уменьшается с помощью целесообразных средств для уменьшения энергии переключения. При этом речь идет, например, о нелинейных сопротивлениях, например об отводящих элементах, варисторах или т.п. Если падающее на них напряжение превышает предельное значение, то эти конструктивные элементы ведут себя как омические сопротивления, при этом они при переключении преобразуют высвобождаемую энергию в тепловую энергию и передают в окружающую атмосферу.

Целесообразно, механический переключатель выполнен в виде быстрого переключателя и предназначен для размыкания внутри 1-10 мс. Такие быстрые переключатели имеют уменьшенную переключательную массу, которая должна приводиться в движения при переключении. Кроме того, требуются быстро срабатывающие приводы, например, электродинамические приводы.

Согласно другому варианту выполнения изобретения, целесообразно, что устройство, согласно изобретению, также используется в виде модуля и тем самым применяется в виде биполярного или двухполюсного конструктивного элемента в последовательной схеме.

Наконец, следует отметить, что включаемые и выключаемые силовые полупроводниковые переключатели показаны здесь всегда в связи с соответствующим параллельным противоположно направленным безынерционным диодом или в виде проводящего в противоположном направлении силового полупроводникового прибора. Однако это обусловлено, прежде всего, тем, что выключаемые силовые полупроводниковые приборы, такие как IGBT, IGCT, GTO или т.п., как правило, всегда предлагаются на рынке с параллельным противоположно направленным безынерционным диодом. Такой противоположно направленный безынерционный диод служит для защиты силового полупроводникового переключателя, который чрезвычайно чувствителен относительно напряжения, противоположного его направлению пропускания. Однако указанный безынерционный диод не обязательно требуется во всех показанных здесь случаях. Эти случаи ясны для специалистов в данной области техники, так что они специально не указываются. Однако реализации изобретения, в которых может в соответствии с функцией отсутствовать противоположно направленный расположенный параллельно силовому полупроводниковому переключателю безынерционный диод, должны также входить в объем изобретения.

Другие целесообразные варианты выполнения и преимущества изобретения являются предметом приведенного ниже описания примеров выполнения со ссылками на прилагаемые чертежи, на которых одинаковыми позициями обозначены одинаково действующие конструктивные элементы и на которых изображено:

фиг. 1 - первый пример выполнения переключателя постоянного напряжения, согласно изобретению;

фиг. 2 и 3 - пример выполнения, согласно фиг. 1, с различными путями тока при выключении;

фиг. 4 - другой пример выполнения устройства, согласно изобретению;

фиг. 5 - модуль импульсного тока.

На фиг. 1 показан вариант выполнения переключателя 10 постоянного напряжения, согласно изобретению, который может включаться первой и второй узловой точкой 101, 102 последовательно в полюс, т.е. провод сети 1 постоянного напряжения. Переключатель постоянного напряжения служит для прерывания пути тока в полюсе сети постоянного напряжения.

Переключатель 10 постоянного напряжения имеет первую ветвь тока между первой и второй узловой точкой 101, 102, которая не содержит полупроводниковые элементы, а лишь механический переключатель 11. За счет этого здесь возникают лишь очень небольшие электрические потери, и во время работы прохождение тока происходит по существу в первой ветви тока. Не обязательно, в первой ветви тока предусмотрен поглотитель энергии, например, варистор 12. Он включен параллельно механическому переключателю.

Параллельно ему включена, т.е. также находится между первой и второй узловой точкой 101, 102, вторая ветвь тока. Вторая ветвь тока не позволяет в нормальном рабочем состоянии проходить току или проходить лишь незначительному току. Вторая ветвь тока содержит модуль 20 импульсного тока. Кроме того, модуль 20 импульсного тока соединен также с третьей узловой точкой 103 переключателя 10 постоянного напряжения, которая соединена с других полюсом сети 1 постоянного напряжения. Исходя из третьей узловой точки 103, два безынерционных диода 13, 14 ведут к первой, соответственно, второй узловой точке 101, 102. Не обязательно, последовательно с безынерционными диодами 13, 14 может быть предусмотрен соответствующий другой поглотитель 131, 141 энергии.

Сам модуль 20 импульсного тока содержит первую - пятую узловую точку 201…205 модуля. При этом первая узловая точка 201 модуля соединена с первой узловой точкой 101, вторая узловая точка 202 модуля соединена со второй узловой точкой 102, и третья узловая точка 203 модуля соединена с третьей узловой точкой 103.

Модуль 20 импульсного тока содержит первый - четвертый полупроводниковый переключатель 21…24, конденсатор 25 импульсного тока и тиристор 27. Не обязательно, предусмотрен поглотитель 26 энергии и/или зарядное сопротивление 28. Конденсатор 25 импульсного тока имеет, например, емкость 10 мФ.

Первая узловая точка 201 модуля является потенциальной точкой между первым и третьим полупроводниковым переключателем 21, 23, которые включены последовательно в одном направлении. Вторая узловая точка 202 модуля является точкой потенциала между вторым и четвертым полупроводниковым переключателем 22, 24, которые также включены последовательно в одном направлении. Противоположные первой, соответственно, второй узловой точке 201, 202 модуля соединительные выводы первого и второго полупроводникового переключателя 21, 22 соединены в четвертую узловую точку 204 модуля. Противоположные первой, соответственно, второй узловой точке 201, 202 модуля соединительные выводы третьего и четвертого полупроводникового переключателя 23, 24 соединены в пятую узловую точку 205 модуля.

Между пятой узловой точкой 205 модуля и третьей узловой точкой 203 модуля расположен тиристор 27, при этом он относительно третьей узловой точки 204 модуля расположен запирающим образом. Конденсатор 25 импульсного тока расположен между четвертой и пятой узловой точкой 204, 205 модуля. Не обязательное зарядное сопротивление 28 расположено последовательно конденсатору 25 импульсного тока. Поглотитель 26 энергии расположен между четвертой и пятой узловой точкой 204, 205 модуля, т.е. параллельно конденсатору 25 импульсного тока.

Во время работы постоянный ток проходит через механический переключатель 11. Конденсатор 25 импульсного тока заряжается за счет включения тиристора 27. Если обнаруживается короткое замыкание или необходимо по другой причине отключение тока, то не изображенный на фиг. 1 управляющий блок выполняет переключения переключателя 10 постоянного напряжения.

В первой стадии размыкается механический переключатель 11, и включаются два диагонально лежащих из четырех полупроводниковых переключателей 21…24. Если во время работы ток проходил со стороны первой узловой точки 101 к стороне второй узловой точки 102, то включаются второй и третий полупроводниковые переключатели 22, 23, при другом направлении тока включаются первый и четвертый полупроводниковые переключатели 21, 24. В последующем принимается направление тока со стороны первой узловой точки 101 к стороне второй узловой точки 102.

За счет включения соответствующих двух полупроводниковых переключателей 21…24 образуется контур тока, через который может разряжаться конденсатор 25 импульсного тока по пути через вторую узловую точку 102, механический переключатель 11 и первую узловую точку 101. За счет этого создается импульс тока, который направлен противоположно току из обычной работы, соответственно, току короткого замыкания, и тем самым создается переход тока через нулевую точку. При этом прохождении тока через нулевую точку гаснет электрическая дуга в механическом переключателе 11. За счет этого открывается путь выключения тока в полупроводниковых переключателях 21…24. Контур тока выделен на фиг. 2.

Аварийный ток, соответственно, рабочий ток проходит в этой точке через диоды первого и второго полупроводникового переключателя 21, 24. Управляющий блок обеспечивает, что механический переключатель 11 полностью размыкается. После этого целесообразно создается другой путь для тока.

Для создания безынерционного пути для аварийного тока, затем включается тиристор 27. За счет этого получаются пути тока, которые показаны на фиг. 3, для случая прохождения тока в направлении от первой ко второй узловой точке 101, 102. Анод диода четвертого полупроводникового переключателя 24 заземляется за счет включения тиристора 27, за счет чего этот диод больше не проводит ток. После этого безынерционный путь для проходящего мимо нагрузки тока ведет от первой узловой точки 101 через диод первого полупроводникового переключателя 21, который, однако, сам выключен, через конденсатор 25 импульсного тока и тиристор 27 к третьей узловой точке 103, т.е. к другому полюсу сети 1 постоянного напряжения. Безынерционный путь для проходящего на стороне нагрузки тока ведет через безынерционный диод 14 от третьей ко второй узловой точке 103, 102.

Конденсатор 25 импульсного тока заряжается, пока индуктивно накопленная энергия не будет израсходована вне нагрузки, и тиристор выключается вследствие отсутствия дальнейшего тока.

На фиг. 4 показан второй полупроводниковый переключатель 40, в котором применяется несколько модулей 20 импульсного тока. Части полупроводникового переключателя 40, соответственно, окружающие части сети 1 постоянного напряжения, которые не изменились по сравнению с первым примером выполнения из фиг. 1, обозначены на фиг. 4 теми же позициями, что и на фиг. 1.

Во втором пути тока, который в первом примере выполнения ведет через модуль 20 импульсного тока, теперь, в противоположность примеру выполнения на фиг. 1, расположены два модуля 41, 42 импульсного тока. Соединение наружу происходит в модулях 41, 42 импульсного тока точно так же, как в модуле 20 импульсного тока на фиг. 1, т.е. через первую, вторую и третью узловую точку 201, 202, 203 модуля.

Только для наглядности модули 41, 42 импульсного тока не содержат соответствующий согласованный тиристор 411, 421, в то время как на фиг. 1 модуль 20 импульсного тока содержит тиристор 27. Несмотря на это, каждый из модулей 41, 42 импульсного тока на фиг. 4 соединен с помощью соответствующего собственного тиристора 411, 421 с третьей узловой точкой, т.е. не с подлежащим переключению полюсом сети 1 постоянного напряжения.

Выполнение каждого модуля 41, 42 импульсного тока из фиг. 4 показано упрощенно на фиг. 5 и соответствует по существу модулю 20 импульсного тока на фиг. 1. Первая узловая точка 201 первого модуля 41 импульсного тока соединена с первой узловой точкой 101, и вторая узловая точка 202 первого модуля 41 импульсного тока соединена с первой узловой точкой 201 второго модуля 42 импульсного тока. Вторая узловая точка 202 второго модуля 42 импульсного тока соединена со второй узловой точкой 102.

За счет такого последовательного включения или параллельного включения модулей 41, 42 импульсного тока можно устанавливать предельную нагрузку переключателя постоянного напряжения с помощью выключаемого тока или выключаемого напряжения, при этом можно снова применять стандартные компоненты в области переключателей и конденсаторов. Например, за счет последовательного включения нескольких модулей 41, 42 импульсного тока можно выполнять полупроводниковый переключатель для рабочего напряжения 70 кВ или еще выше.

Похожие патенты RU2695800C1

название год авторы номер документа
ЛИНЕЙНЫЙ ЗАЩИТНЫЙ АВТОМАТ ПОСТОЯННОГО НАПРЯЖЕНИЯ 2012
  • Гаксиола Энрике
  • Фогельзанг Якоб
RU2592640C2
МОДУЛЬНЫЙ МНОГОТОЧЕЧНЫЙ ВЕНТИЛЬНЫЙ ПРЕОБРАЗОВАТЕЛЬ ДЛЯ ВЫСОКИХ НАПРЯЖЕНИЙ 2014
  • Марквардт Райнер
RU2652690C2
ПРЕОБРАЗОВАТЕЛЬНОЕ УСТРОЙСТВО И СПОСОБ ЕГО ЗАЩИТЫ ОТ КОРОТКОГО ЗАМЫКАНИЯ 2015
  • Сюй Цзян
  • Бакран Марк-Маттиас
  • Шен Андре
RU2683956C1
ПОДМОДУЛЬ ДЛЯ МОДУЛЬНОГО МНОГОСТУПЕНЧАТОГО ПРЕОБРАЗОВАТЕЛЯ ЧАСТОТЫ 2012
  • Ойлер Инго
  • Гамбах Херберт
  • Шреммер Франк
  • Вале Маркус
RU2599261C2
СПОСОБ ОГРАНИЧЕНИЯ ПОВРЕЖДЕНИЯ ВЫПРЯМИТЕЛЯ ТОКА, ИМЕЮЩЕГО СИЛОВЫЕ ПОЛУПРОВОДНИКОВЫЕ ПРИБОРЫ, ПРИ КОРОТКОМ ЗАМЫКАНИИ В ПРОМЕЖУТОЧНОМ КОНТУРЕ ПОСТОЯННОГО НАПРЯЖЕНИЯ 2007
  • Доммашк Мике
  • Дорн Йорг
  • Ойлер Инго
  • Ланг Йорг
  • Ту Квок-Буу
  • Вюрфлингер Краус
RU2430461C2
МОДУЛЬНЫЙ МНОГОКРАТНЫЙ ПРЕОБРАЗОВАТЕЛЬ, СНАБЖЕННЫЙ ПРОВОДЯЩИМИ В ОБРАТНОМ НАПРАВЛЕНИИ СИЛОВЫМИ ПОЛУПРОВОДНИКОВЫМИ РЕЛЕ 2012
  • Эккель Ханс-Гюнтер
RU2587683C2
РАЗЪЕДИНИТЕЛЬ ДЛЯ ГАЛЬВАНИЧЕСКОГО ПРЕРЫВАНИЯ ПОСТОЯННОГО ТОКА 2010
  • Науманн Михаэль
  • Цитцельшпергер Томас
  • Гердинанд Франк
RU2482565C2
Преобразователь постоянного напряжения в постоянное 1988
  • Липатов Сергей Викторович
  • Зеленов Владимир Евгеньевич
SU1541725A1
УСТАНОВКА ДЛЯ ПЕРЕДАЧИ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 2008
  • Асплунд Гуннар
RU2477556C2
ИНВЕРТОР ДЛЯ ВЫСОКИХ НАПРЯЖЕНИЙ 2010
  • Марквардт Райнер
RU2563034C2

Иллюстрации к изобретению RU 2 695 800 C1

Реферат патента 2019 года УСТРОЙСТВО ДЛЯ ПЕРЕКЛЮЧЕНИЯ ПОСТОЯННОГО ТОКА В ПОЛЮСЕ СЕТИ ПОСТОЯННОГО НАПРЯЖЕНИЯ

Изобретение относится к области электротехники, в частности к отключению токов короткого замыкания, которые возникают в сложных сетях постоянного напряжения. Технической задачей изобретения является создание устройства, с помощью которого надежно и экономично выключаться аварийные токи в сети постоянного напряжения. Переключатель постоянного напряжения (10) с первой и второй узловой точкой для включения последовательно в один полюс сети (1) постоянного напряжения и с третьей узловой точкой для соединения с другим полюсом сети (1) постоянного напряжения, дополнительно содержит: - расположенный между первой и второй узловой точкой механический переключатель (11), - по меньшей мере один расположенный между первой и второй узловой точкой параллельно механическому переключателю (11) модуль (41, 42) импульсного тока, при этом модуль (41, 42) импульсного тока имеет три узловые точки (201, 202, 203) модуля, и первая узловая точка модуля соединена с первой узловой точкой, и вторая узловая точка модуля соединена со второй узловой точкой, и третья узловая точка модуля соединена с третьей узловой точкой; - содержит четыре полупроводниковых переключателя (21…24), которые включены в виде моста из двух последовательных схем из двух полупроводниковых переключателей каждая, при этом потенциальные точки между полупроводниковыми переключателями обеих последовательных схем соответствуют первой и второй узловой точке модуля, и наружные концы обеих последовательных схем из соответствующих двух полупроводниковых переключателей соединены попарно в четвертую и пятую узловую точку модуля; - содержит конденсатор (25) импульсного тока, который включен параллельно обеим последовательным схемам из соответствующих двух полупроводниковых переключателей; - содержит переключаемый полупроводниковый элемент (27) между пятой и третьей узловой точкой модуля. 7 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 695 800 C1

1. Переключатель постоянного напряжения (10, 40) с первой и второй узловой точкой (101, 102) для включения последовательно в один полюс (1) линии постоянного напряжения и с третьей узловой точкой (103) для соединения с другим полюсом линии постоянного напряжения, дополнительно содержащий:

- расположенный между первой и второй узловой точкой (101, 102) механический переключатель (11),

- по меньшей мере один расположенный между первой и второй узловой точкой (101, 102) параллельно механическому переключателю (11) модуль (41, 42) импульсного тока,

при этом модуль (41, 42) импульсного тока

- имеет три узловые точки (201, 202, 203) модуля, и первая узловая точка (201) модуля соединена с первой узловой точкой (101), и вторая узловая точка (202) модуля соединена со второй узловой точкой (102), и третья узловая точка (203) модуля соединена с третьей узловой точкой (103);

- содержит четыре полупроводниковых переключателя (21…24), которые включены в виде моста из двух последовательных схем из двух полупроводниковых переключателей (21…24) каждая, при этом потенциальные точки между полупроводниковыми переключателями (21…24) обеих последовательных схем соответствуют первой и второй узловой точке (201, 202) модуля, и наружные концы обеих последовательных схем из соответствующих двух полупроводниковых переключателей (21…24) соединены попарно в четвертую и пятую узловую точку (204, 205) модуля;

- содержит конденсатор (25) импульсного тока, который включен параллельно обеим последовательным схемам из соответствующих двух полупроводниковых переключателей (21…24);

- содержит переключаемый полупроводниковый элемент (27) между пятой и третьей узловой точкой (205, 203) модуля.

2. Переключатель постоянного напряжения (10, 40) по п. 1, содержащий безынерционный диод (13) между третьей и первой узловой точкой (103, 101) и другой безынерционный диод (14) между третьей и второй узловой точкой (103, 102).

3. Переключатель постоянного напряжения (10, 40) по п. 1, содержащий включенное последовательно конденсатору (25) импульсного тока сопротивление (28) для ограничения тока зарядки.

4. Переключатель постоянного напряжения (10, 40) по п. 1, содержащий несколько модулей (41, 42) импульсного тока, которые включены последовательно своими первыми и вторыми узловыми точками (201, 202) модуля, и последовательное включение расположено между первой и второй узловой точкой (101, 102).

5. Переключатель постоянного напряжения (10, 40) по п. 1, в котором механический переключатель (11) имеет время переключения меньше 5 мс.

6. Переключатель постоянного напряжения (10, 40) по п. 1, в котором переключаемый полупроводниковый элемент (27) является тиристором (27).

7. Переключатель постоянного напряжения (10, 40) по п. 1, содержащий управляющий блок, который предназначен для размыкания механического переключателя (11) и для включения двух из четырех полупроводниковых переключателей (21…24) для создания направленного противоположно току в линии постоянного напряжения импульса тока.

8. Переключатель постоянного напряжения (10, 40) по п. 6, в котором управляющий блок дополнительно предназначен для включения включаемого полупроводникового элемента (27) при отделении линии постоянного напряжения.

Документы, цитированные в отчете о поиске Патент 2019 года RU2695800C1

Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз 1924
  • Подольский Л.П.
SU2014A1
Многоступенчатая активно-реактивная турбина 1924
  • Ф. Лезель
SU2013A1
Способ приготовления лака 1924
  • Петров Г.С.
SU2011A1
Переключатель питания постоянного тока 1977
  • Могилевский Геннадий Викторович
  • Лифар Анатолий Васильевич
  • Колосов Василий Васильевич
SU664257A1

RU 2 695 800 C1

Авторы

Кришнан, Джаганатх

Гюльднер, Хенри

Хандт, Карстен

Нилебок, Себастьян

Даты

2019-07-29Публикация

2017-01-27Подача