АКТИВНЫЙ RC-ФИЛЬТР НИЖНИХ ЧАСТОТ ТРЕТЬЕГО ПОРЯДКА НА ОПЕРАЦИОННОМ УСИЛИТЕЛЕ С ПАРАФАЗНЫМ ВЫХОДОМ Российский патент 2019 года по МПК H03H11/12 

Описание патента на изобретение RU2695977C1

Изобретение относится к области радиотехники, а также измерительной техники, и может использоваться, например, в качестве ограничителей спектра, включаемых на входе аналого-цифровых преобразователей различного назначения.

Активные RC-фильтры нижних частот (ФНЧ) широко используются в современной электронике [1-24] и оказывают существенное влияние на качественные показатели многих аналого-цифровых систем связи и автоматического управления [4-7]. При этом для АЦП с дифференциальным входом необходимы антиэлайзинговые RC-фильтры с дифференциальным выходом [25-39].

Ближайшим прототипом заявляемого устройства является RC-фильтр, описанный в публикации фирмы Texas Instruments «THS413x High-Speed, Low-Noise, Fully-Differential I/O Amplifiers. SLOS318I –MAY 2000–REVISED AUGUST 2015. p. 20, fig. 41. URL: http://www.ti.com/lit/ds/symlink/ths4130.pdf». Он содержит (фиг .1) первый 1 и второй 2 дифференциальные входы устройства, первый 3 и второй 4 дифференциальные выходы устройства, дифференциальный операционный усилитель 5 с инвертирующим 6 и неинвертирущим 7 выходами, причём его инвертирующий выход 6 соединён с первым 3 выходом устройства, а его неинвертирущий выход 7 соединён со вторым 4 выходом устройства, первый 8 конденсатор, включённый между неинвертирущим входом дифференциального операционного усилителя 5 и его инвертирующим выходом 6, второй 9 конденсатор, включённый между инвертирующим входом дифференциального операционного усилителя 5 и его неинвертирующим выходом 7, первый 10, второй 11, третий 12, четвёртый 13, пятый 14, шестой 15 резисторы, третий 16 конденсатор, общую шину источников питания 17.

Существенный недостаток известного устройства фиг. 1 состоит в том, что при его реализации не обеспечивается высокое ослабление паразитных сигналов за пределами полосы частот полезного сигнала.

Основная задача предполагаемого изобретения состоит в увеличении крутизны амплитудно-частотной характеристики (АЧХ) ФНЧ в переходной области и увеличение затухания АЧХ в полосе задерживания. Данный эффект достигается за счет повышения порядка ФНЧ, причем без применения дополнительных активных элементов.

Поставленная задача достигается тем, что в активном RC-фильтре фиг. 1, содержащем первый 1 и второй 2 дифференциальные входы устройства, первый 3 и второй 4 дифференциальные выходы устройства, дифференциальный операционный усилитель 5 с инвертирующим 6 и неинвертирущим 7 выходами, причём его инвертирующий выход 6 соединён с первым 3 выходом устройства, а его неинвертирущий выход 7 соединён со вторым 4 выходом устройства, первый 8 конденсатор, включённый между неинвертирущим входом дифференциального операционного усилителя 5 и его инвертирующим выходом 6, второй 9 конденсатор, включённый между инвертирующим входом дифференциального операционного усилителя 5 и его неинвертирующим выходом 7, первый 10, второй 11, третий 12, четвёртый 13, пятый 14, шестой 15 резисторы, третий 16 конденсатор, общую шину источников питания 17, предусмотрены новые элементы и связи – в схему введены первый 18 и второй 19 дополнительные резисторы, а также первый 20, второй 21 и третий 22 дополнительные конденсаторы, причём первый 10 резистор, первый 18 дополнительный резистор и второй 11 резистор соединены последовательно друг с другом и включены между первым 1 входом устройства и неинвертирующим входом дифференциального операционного усилителя 5, четвёртый 13 резистор, второй 19 дополнительный резистор и пятый 14 резистор соединены последовательно друг с другом и включены между вторым 2 входом устройства и инвертирующим входом дифференциального операционного усилителя 5, общий узел последовательно соединенных первого 10 резистора и первого 18 дополнительного резистора связан с общей шиной источника питания 17 через третий 22 дополнительный конденсатор и через третий 12 резистор подключён к первому 3 выходу устройства, общий узел последовательно соединенных четвёртого 13 резистора и второго 19 дополнительного резистора связан с общей шиной источников питания 17 через третий 16 конденсатор и через шестой 15 резистор подключён ко второму 4 выходу устройства, общий узел последовательно соединенных первого 18 дополнительного резистора и второго 11 резистора связан со вторым 4 выходом устройства через первый 20 дополнительный конденсатор, а общий узел последовательно соединенных второго 19 дополнительного резистора и пятого 14 резистора связан с первым 3 выходом устройства через второй 21 дополнительный конденсатор.

На чертеже фиг. 1 показана схема фильтра-прототипа, а на чертеже фиг. 2 – схема заявляемого активного RC-фильтра нижних частот третьего порядка в соответствии с формулой изобретения.

На чертеже фиг. 3 представлено сравнение трех АЧХ предлагаемой схемы ФНЧ, полученных при компьютерном моделировании на ОУ THS4131 («1»), AD8132 («2») и теоретических расчетах («3»), выполненных по формуле (1).

Активный RC-фильтр нижних частот третьего порядка на операционном усилителе с парафазным выходом фиг. 2 содержит первый 1 и второй 2 дифференциальные входы устройства, первый 3 и второй 4 дифференциальные выходы устройства, дифференциальный операционный усилитель 5 с инвертирующим 6 и неинвертирущим 7 выходами, причём его инвертирующий выход 6 соединён с первым 3 выходом устройства, а его неинвертирущий выход 7 соединён со вторым 4 выходом устройства, первый 8 конденсатор, включённый между неинвертирущим входом дифференциального операционного усилителя 5 и его инвертирующим выходом 6, второй 9 конденсатор, включённый между инвертирующим входом дифференциального операционного усилителя 5 и его неинвертирующим выходом 7, первый 10, второй 11, третий 12, четвёртый 13, пятый 14, шестой 15 резисторы, третий 16 конденсатор, общую шину источников питания 17. В схему введены первый 18 и второй 19 дополнительные резисторы, а также первый 20, второй 21 и третий 22 дополнительные конденсаторы, причём первый 10 резистор, первый 18 дополнительный резистор и второй 11 резистор соединены последовательно друг с другом и включены между первым 1 входом устройства и неинвертирующим входом дифференциального операционного усилителя 5, четвёртый 13 резистор, второй 19 дополнительный резистор и пятый 14 резистор соединены последовательно друг с другом и включены между вторым 2 входом устройства и инвертирующим входом дифференциального операционного усилителя 5, общий узел последовательно соединенных первого 10 резистора и первого 18 дополнительного резистора связан с общей шиной источника питания 17 через третий 22 дополнительный конденсатор и через третий 12 резистор подключён к первому 3 выходу устройства, общий узел последовательно соединенных четвёртого 13 резистора и второго 19 дополнительного резистора связан с общей шиной источников питания 17 через третий 16 конденсатор и через шестой 15 резистор подключён ко второму 4 выходу устройства, общий узел последовательно соединенных первого 18 дополнительного резистора и второго 11 резистора связан со вторым 4 выходом устройства через первый 20 дополнительный конденсатор, а общий узел последовательно соединенных второго 19 дополнительного резистора и пятого 14 резистора связан с первым 3 выходом устройства через второй 21 дополнительный конденсатор.

Рассмотрим работу ФНЧ фиг. 2.

В общем случае передаточная функция схемы ФНЧ 3-го порядка, в т.ч. фиг. 2, описывается выражением

, (1)

где М – коэффициент передачи фильтра на нулевой частоте, – коэффициенты передаточной функции, зависящие от топологии схемы и параметров её элементов.

При анализе введем следующие обозначения: – сопротивления первого 10, второго 11, третьего 12, четвертого 13, пятого 14 и шестого 15 резисторов соответственно, - сопротивления первого 18 и второго 19 дополнительных резисторов, – емкости первого 8, второго 9 и третьего 16 конденсаторов, – емкости первого 20, второго 21 и третьего 22 дополнительных конденсаторов соответственно.

При выполнении ряда условий

которые необходимо обеспечить в схеме фиг. 2 для симметричной работы каналов ФНЧ, коэффициенты передаточной функции (1) находятся с помощью следующих формул.

Для сравнения на чертеже фиг. 3 представлены три АЧХ предлагаемой схемы ФНЧ, полученные при компьютерном моделировании на ОУ THS4131 («1»), AD8132 («2») и теоретических расчетах («3»), выполненных по формуле (1).

Незначительное отклонение в области высоких частот амплитудно-частотной характеристики, полученной в результате моделирования схемы с реальными ОУ («1», «2») от АЧХ, полученной расчетным путем («3») по формуле (1), связано с влиянием частотных свойств ОУ, которое не учитывалось при нахождении коэффициентов (2) передаточной функции (1).

Следовательно, предлагаемая схема обеспечивает практически идеальную теоретическую АЧХ «3» фильтра нижних частот третьего порядка в частотном диапазоне до 50-80 МГц. При этом на данных частотах ФНЧ дает ослабление сигнала более 120 дБ, что достаточно для многих применений.

Кроме этого, схема фиг. 2 имеет более высокую крутизну АЧХ в переходной области и повышенное затухание АЧХ в полосе задерживания. Данный эффект достигается за счет повышения порядка ФНЧ, причем без применения дополнительных активных элементов.

Таким образом, предлагаемый ФНЧ, в сравнении с прототипом, имеет более высокие обобщенные показатели качества.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Патент US 6.583.662 fig. 8c, 2003г.

2. THS413x High-Speed, Low-Noise, Fully-Differential I/O Amplifiers. SLOS318I –MAY 2000–REVISED AUGUST 2015. p. 20, fig. 41. URL: http://www.ti.com/lit/ds/symlink/ths4130.pdf

3. Analog Devces: AD8132. Low Cost, High Speed Differential Amplifier. p. 27, fig. 77. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/ad8132.pdf

4. Выбор параметров аналоговых ограничителей спектра для цифровых систем обработки сигналов с учетом допусков и температурной нестабильности пассивных компонентов / Денисенко Д.Ю., Иванов Ю.И., Прокопенко Н.Н. // Радиотехника. – 2017. - № 1. – С.148-153

5. Estimation to Efficiency of the Using of Anti-Alias Filter in the A/D Interface of Instrumentation and Control Systems / L.K. Samoylov, N.N. Prokopenko, A.V. Bugakova // Proceedings of IEEE East-West Design & Test Symposium (EWDTS’2018), Kazan, Russia, September 14 - 17, 2018, pp. 422-425

6. Selection of the Band-Pass Range of the Normalizing Signal Transducer of the Sensing Element in the Instrumentation and Control Systems / L.K. Samoylov, N.N. Prokopenko, A.V. Bugakova // 2018 14th IEEE International Conference on Solid-State and Intergated Circuit Technology (ICSICT’2018). Proceedings. Oct.31-Nov.3, 2018, Qingdao, China

7. The Function Approximation of the Signal Delay Time in the Anti-Alias Filter of the A/D Interface of the Instrumentation and Control System / L.K. Samoylov, D.Yu.Denisenko, N.N. Prokopenko // 2018 IEEE International Conference on Electrical Engineering and Photonics (EExPolytech-2018), October 22-23, 2018, Saint Petersburg, Russia

8. Справочник по расчету и проектированию ARC-схем / Букашкин С.А., Власов В.П., Змий Б.Ф. и др.; Под. ред. А.А. Ланнэ. – М.: радио и связь, 1984. – 368 с.

9. Патент US 5.371.472, 1994 г.

10. Патент US 3.787.776, 1974 г.

11. Патентная заявка US 2007/0296496, 2007 г.

12. Патент RU 2370881, 2009 г.

13. Патент RU 2370882, 2009 г.

14. Патент RU 2370880, 2009 г.

15. Патент US 3.736.517, 1973 г.

16. Патент US 6.407.627, 2002 г.

17. Патент SU 1187241, 1985 г.

18. Патент US 6.344.773, 2002 г.

19. Патент US 6.710.644, 2004 г.

20. Патент SU 1777233, 1990 г.

21. Патент RU 2019023, 1994 г.

22. Патент SU 1202032, 1985 г.

23. Патент SU 1758823, 1990 г.

24. Патент RU 2249910, 2005 г.

25. Патент US 6.583.662, fig. 8c, 2003 г.

26. Патент US 6.369.647, fig. 9, 2002 г.

27. Патент US 6.344.773, fig. 5, 2002 г.

28. Патентная заявка US 2011/0170628, fig. 9, 2011 г.

29. Патентная заявка US 2009/0134954, 2009 г.

30. Патент US 5.418.492, fig. 1, 1995 гг.

31. Патентная заявка US 2011/0170628, fig. 18, 2011г.

32. Патентная заявка US 2012/0212288, fig. 11, 2012 г.

33. Патентная заявка US 2006/0255997, fig. 9b, 2006 г.

34. Патент US 9.294.048, fig.2, 2016 г.

35. Патент US 9.647.639, fig. 7, 2017 г.

36. Патент US 6.246.268, fig. 1, 2001 г.

37. Патент US 5.699.016, fig. 2, 1997 г.

38. Патент RU 376701, 1973 г.

39. Патент US 5.699.016, 1997 г.

Похожие патенты RU2695977C1

название год авторы номер документа
АКТИВНЫЙ RC-ФИЛЬТР НИЖНИХ ЧАСТОТ ТРЕТЬЕГО ПОРЯДКА С ДИФФЕРЕНЦИАЛЬНЫМ ВХОДОМ НА БАЗЕ ОПЕРАЦИОННОГО УСИЛИТЕЛЯ С ПАРАФАЗНЫМ ВЫХОДОМ 2019
  • Денисенко Дарья Юрьевна
  • Жебрун Евгений Андреевич
  • Бугакова Анна Витальевна
  • Прокопенко Николай Николаевич
RU2695981C1
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ 2019
  • Денисенко Дарья Юрьевна
  • Прокопенко Николай Николаевич
RU2702496C1
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР 2019
  • Денисенко Дарья Юрьевна
  • Прокопенко Николай Николаевич
RU2702499C1
НИЗКОЧУВСТВИТЕЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР ВТОРОГО ПОРЯДКА НА ОСНОВЕ ДВУХ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ 2019
  • Денисенко Дарья Юрьевна
  • Бутырлагин Николай Владимирович
  • Прокопенко Николай Николаевич
RU2710292C1
НИЗКОЧУВСТВИТЕЛЬНЫЙ ARC-ФИЛЬТР ВТОРОГО ПОРЯДКА НА ОСНОВЕ ДВУХ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ 2019
  • Денисенко Дарья Юрьевна
  • Жебрун Евгений Андреевич
  • Прокопенко Николай Николаевич
RU2710852C1
УНИВЕРСАЛЬНЫЙ АКТИВНЫЙ RC-ФИЛЬТР ВТОРОГО ПОРЯДКА НА ОСНОВЕ МУЛЬТИДИФФЕРЕНЦИАЛЬНЫХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЕЙ 2019
  • Денисенко Дарья Юрьевна
  • Бугакова Анна Витальевна
  • Прокопенко Николай Николаевич
RU2707706C1
ШИРОКОПОЛОСНЫЙ ПОЛОСОВОЙ ФИЛЬТР С НЕЗАВИСИМОЙ ПОДСТРОЙКОЙ ЧАСТОТЫ ПОЛЮСА, ЗАТУХАНИЯ ПОЛЮСА И КОЭФФИЦИЕНТА ПЕРЕДАЧИ 2019
  • Денисенко Дарья Юрьевна
  • Бугакова Анна Витальевна
  • Жебрун Евгений Андреевич
  • Прокопенко Николай Николаевич
RU2704530C1
АКТИВНЫЙ RC-ФИЛЬТР НИЖНИХ ЧАСТОТ ТРЕТЬЕГО ПОРЯДКА НА БАЗЕ ОПЕРАЦИОННОГО УСИЛИТЕЛЯ С ПАРАФАЗНЫМ ВЫХОДОМ 2019
  • Денисенко Дарья Юрьевна
  • Бугакова Анна Витальевна
  • Свизев Григорий Альбертович
  • Прокопенко Николай Николаевич
RU2697945C1
ПОЛОСОВОЙ ФИЛЬТР НА ДВУХ ОПЕРАЦИОННЫХ УСИЛИТЕЛЯХ С НЕЗАВИСИМОЙ ПОДСТРОЙКОЙ ОСНОВНЫХ ПАРАМЕТРОВ 2019
  • Денисенко Дарья Юрьевна
  • Овсепян Елена Владимировна
  • Титов Алексей Евгеньевич
  • Прокопенко Николай Николаевич
RU2701038C1
АКТИВНЫЙ RC-ФИЛЬТР НИЖНИХ ЧАСТОТ ТРЕТЬЕГО ПОРЯДКА 2018
  • Денисенко Дарья Юрьевна
  • Бутырлагин Николай Владимирович
  • Прокопенко Николай Николаевич
  • Жебрун Евгений Андреевич
RU2697612C1

Иллюстрации к изобретению RU 2 695 977 C1

Реферат патента 2019 года АКТИВНЫЙ RC-ФИЛЬТР НИЖНИХ ЧАСТОТ ТРЕТЬЕГО ПОРЯДКА НА ОПЕРАЦИОННОМ УСИЛИТЕЛЕ С ПАРАФАЗНЫМ ВЫХОДОМ

Изобретение относится к области радиотехник. Технический результат заключается в увеличении крутизны амплитудно-частотной характеристики (АЧХ) ФНЧ в переходной области и увеличении затухания АЧХ в полосе задерживания. Активный RC-фильтр содержит дифференциальный операционный усилитель (5) с инвертирующим (6) и неинвертирущим (7) выходами и первый и второй конденсаторы, что позволяет достичь более высокую крутизну АЧХ в переходной области и повышенное затухание АЧХ в полосе задерживания. 3 ил.

Формула изобретения RU 2 695 977 C1

Активный RC-фильтр нижних частот третьего порядка на операционном усилителе с парафазным выходом, содержащий первый (1) и второй (2) дифференциальные входы устройства, первый (3) и второй (4) дифференциальные выходы устройства, дифференциальный операционный усилитель (5) с инвертирующим (6) и неинвертирущим (7) выходами, причём его инвертирующий выход (6) соединён с первым (3) выходом устройства, а его неинвертирущий выход (7) соединён со вторым (4) выходом устройства, первый (8) конденсатор, включённый между неинвертирущим входом дифференциального операционного усилителя (5) и его инвертирующим выходом (6), второй (9) конденсатор, включённый между инвертирующим входом дифференциального операционного усилителя (5) и его неинвертирующим выходом (7), первый (10), второй (11), третий (12), четвёртый (13), пятый (14), шестой (15) резисторы, третий (16) конденсатор, общую шину источников питания (17), отличающийся тем, что в схему введены первый (18) и второй (19) дополнительные резисторы, а также первый (20), второй (21) и третий (22) дополнительные конденсаторы, причём первый (10) резистор, первый (18) дополнительный резистор и второй (11) резистор соединены последовательно друг с другом и включены между первым (1) входом устройства и неинвертирующим входом дифференциального операционного усилителя (5), четвёртый (13) резистор, второй (19) дополнительный резистор и пятый (14) резистор соединены последовательно друг с другом и включены между вторым (2) входом устройства и инвертирующим входом дифференциального операционного усилителя (5), общий узел последовательно соединенных первого (10) резистора и первого (18) дополнительного резистора связан с общей шиной источника питания (17) через третий (22) дополнительный конденсатор и через третий (12) резистор подключён к первому (3) выходу устройства, общий узел последовательно соединенных четвёртого (13) резистора и второго (19) дополнительного резистора связан с общей шиной источников питания (17) через третий (16) конденсатор и через шестой (15) резистор подключён ко второму (4) выходу устройства, общий узел последовательно соединенных первого (18) дополнительного резистора и второго (11) резистора связан со вторым (4) выходом устройства через первый (20) дополнительный конденсатор, а общий узел последовательно соединенных второго (19) дополнительного резистора и пятого (14) резистора связан с первым (3) выходом устройства через второй (21) дополнительный конденсатор.

Документы, цитированные в отчете о поиске Патент 2019 года RU2695977C1

US 6583662 B1, 25.06.2003
US 6407627 B1, 18.06.2002
СИММЕТРИЧНЫЙ УСИЛИТЕЛЬ ЗАРЯДА ДЛЯ ПЬЕЗОДАТЧИКА (ВАРИАНТЫ) 2008
  • Радчик Игорь Иосифович
  • Тараканов Вячеслав Михайлович
  • Скворцов Олег Борисович
  • Морев Вячеслав Иванович
  • Королев Сергей Алексеевич
  • Тихомиров Вячеслав Николаевич
  • Устинов Роман Алексеевич
  • Янчич Владимир Владимирович
  • Иванов Александр Анатольевич
  • Смирнов Сергей Иванович
RU2370881C1
Активный RC-фильтр 1990
  • Гришин Сергей Валентинович
  • Иванов Юрий Иванович
  • Крутчинский Сергей Георгиевич
SU1777233A1

RU 2 695 977 C1

Авторы

Денисенко Дарья Юрьевна

Бутырлагин Николай Владимирович

Титов Алексей Евгеньевич

Прокопенко Николай Николаевич

Даты

2019-07-29Публикация

2019-02-27Подача