СПОСОБ УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ Российский патент 2019 года по МПК G05D1/10 B64C39/02 B64C1/26 F41G7/00 

Описание патента на изобретение RU2698599C1

Изобретение относится к системам управления беспилотных летательных аппаратов (БПЛА), с управляющими устройствами, действующими автоматически с использованием излучаемых сигналов, а также к размещению и приспособлению приборов на БПЛА, преимущественно, с несимметричным корпусом, обеспечивающим за счет несимметричности своей формы создание подъемной силы при обтекании потоком воздуха в полете.

Известен БПЛА, патент RU №2297950 С1, способ применения которого принят за прототип. Известный БПЛА снабжают корпусом с носовым радиопрозрачным обтекателем, полезной нагрузкой, двигательной установкой и системой управления полетом по введенным координатам, включающей рулевые элементы и головку самонаведения (ГСН) на конечном участке траектории полета, снабженную антенной, закрепленной, под носовым радиопрозрачным обтекателем. Корпус БПЛА оснащают навесным топливным баком, который снабжен аэродинамическим обтекателем, закрепленным снаружи его корпуса с образованием дополнительного объема, в котором размещена аппаратура дополнительного пассивного широкодиапазонного канала ГСН, сообщенная электрической связью с системой управления, корректирующую работу системы управления до конечного участка траектории полета БПЛА. Для формирования подъемной силы, действующий на корпус БПЛА в полете, известный БПЛА может быть снабжен несимметричным корпусом, при этом верхняя часть поверхности носового радиопрозрачного обтекателя выполняется выпуклой, а нижняя его часть выполняется уплощенной. Для повышения точности наведения на конечном участке траектории полета БПЛА, путем обеспечения безинерционной работы антенны ГСН, антенна может быть выполнена в виде плоской активной фазированной антенной решетки (АФАР), закрепленной под носовым радиопрозрачным обтекателем с расположением ее излучающей поверхности параллельно поперечной оси беспилотного летательного аппарата и наклоном к его продольной оси в сторону нижней части поверхности носового радиопрозрачного обтекателя (A.M. Батков, А.А. Борисов "Критические технологии в создании авиационной техники нового поколения", сборник "Новости авиакосмической науки и технологии, МАКС 2003", стр. 9, изд. ОАО "Авиасалон", Межрегиональное Общество авиастроителей). Перед полетом БПЛА в систему управления полетом вводятся координаты траектории полета. В полете БПЛА система управления управляет рулевыми элементами для обеспечения траектории полета. Управление на конечном участке траектории полета осуществляется с использованием антенны ГСН, обеспечивающей повышение точности выполнения конечного участка.

Существенными признаками предлагаемого способа управления полетом БПЛА, совпадающими с признаками прототипа, являются следующие: способ управления полетом беспилотного летательного аппарата, который снабжен несимметричным корпусом с носовым радиопрозрачным обтекателем, верхняя и нижняя части поверхности которого образуют его ширину, при этом верхняя часть выполнена выпуклой, а нижняя часть уплощенной, полезной нагрузкой, двигательной установкой и системой управления полетом, включающей рулевые элементы и головку самонаведения с активной фазированной антенной решеткой, закрепленной под носовым радиопрозрачным обтекателем с расположением ее излучающей поверхности параллельно поперечной оси корпуса и наклоном к его продольной оси, основанный на введении координат траектории полета в систему управления полетом и управлении рулевыми элементами в полете для обеспечения траектории полета.

В известном способе управления БПЛА, закрепление АФАР с наклоном излучающей поверхности к продольной оси БПЛА с наклоном к его продольной оси в сторону нижней части поверхности носового радиопрозрачного обтекателя сопряжено с ее расположением в зоне выпуклой верхней части поверхности носового радиопрозрачного обтекателя меньшей ширины, что приводит к уменьшению суммарной площади (апертуры) АФАР и точности наведения БПЛА на конечном участке траектории полета.

Техническим результатом, на достижение которого направлен предлагаемый способ, является обеспечение возможности увеличения апертуры АФАР, для повышения точности наведения на конечном участке траектории полета БПЛА.

Для решения достижения указанного технического результата, в способе управления полетом беспилотного летательного аппарата, который снабжен несимметричным корпусом с носовым радиопрозрачным обтекателем, верхняя и нижняя части поверхности которого образуют его ширину, при этом верхняя часть выполнена выпуклой, а нижняя часть уплощенной, полезной нагрузкой, двигательной установкой и системой управления полетом, включающей рулевые элементы и головку самонаведения с активной фазированной антенной решеткой, закрепленной под носовым радиопрозрачным обтекателем с расположением ее излучающей поверхности параллельно поперечной оси корпуса и наклоном к его продольной оси, основанный на введении координат траектории полета в систему управления полетом и управлении рулевыми элементами в полете для обеспечения траектории полета, перед выполнением конечного участка траектории полета упомянутый аппарат системой управления поворачивают по крену на 180° и управляют его положением в полете на конечном участке траектории полета в повернутом по крену положении так, что упомянутая головка самонаведения сканирует земную поверхность.

Отличительными признаками предлагаемого способа является то, что перед выполнением конечного участка траектории полета упомянутый аппарат системой управления поворачивают по крену на 180° и управляют его положением в полете на конечном участке траектории полета в повернутом по крену положении так, что упомянутая головка самонаведения сканирует земную поверхность.

Благодаря наличию указанных отличительных признаков в совокупности с известными, достигается возможность увеличения апертуры АФАР, для повышения точности выполнения конечного участка траектории полета БПЛА.

Предложенное техническое решение может найти применение в различных отраслях народного хозяйства, использующих БПЛА, как для повышения точности подлета к цели маршрута, так и для повышения точности возврата к месту старта, например, в метеорологии для измерений и доставки измерительных зондов, в МЧС для разведки зоны чрезвычайной ситуации или доставки полезной нагрузки в зону повышенной опасности.

Техническое решение поясняется чертежами, фиг. 1-3.

На фиг. 1 представлено вид сбоку БПЛА в полете до конечного участка траектории полета.

На фиг. 2 представлен вид спереди БПЛА в полете до конечного участка траектории полета.

На фиг. 3 представлен вид сбоку БПЛА в полете на конечном участке траектории полета.

Представленный на чертежах БПЛА содержит несимметричный корпус 1 с носовым радио прозрачным обтекателем 2, верхняя 3 и нижняя 4 части поверхности которого образуют его ширину, при этом верхняя часть 3 выполнена выпуклой, а нижняя часть 4 уплощенной, полезной нагрузкой 5, двигательной установкой 6 и системой 7 управления полетом, включающей рулевые элементы 8 и головку 9 самонаведения, снабженную АФАР 10, закрепленной под носовым радиопрозрачным обтекателем 2 с расположением ее излучающей поверхности 11 параллельно поперечной оси корпуса 1 и наклоном к его продольной оси. Угол а наклона излучающей поверхности 11 АФАР 10 к продольной оси корпуса 1 обеспечивает ее направление в сторону верхней части 3 поверхности носового радиопрозрачного обтекателя 2, система 7 управления полетом выполнена с возможностью поворота беспилотного летательного аппарата по крену на 180° и управления полетом в повернутом по крену положении, а двигательная установка 6 выполнена с возможностью работы в повернутом по крену положении. Головка 9 самонаведения, посредством АФАР 10, обеспечивает сканирование земной поверхности 12 на конечном участке траектории полета БПЛА.

БПЛА работает следующим образом. Угол α (фиг. 1) наклона излучающей поверхности 11 АФАР 10 к продольной оси корпуса 1 обеспечивает ее направление в сторону верхней части 3 поверхности носового радиопрозрачного обтекателя 2, при этом нижняя часть АФАР 10 располагается вблизи уплощенной нижней части 4 поверхности носового радиопрозрачного обтекателя 2, образующей его ширину, то есть в районе его ширины, а верхняя часть АФАР 10 располагается вблизи верхней части 3 поверхности носового радиопрозрачного обтекателя 2, в районе ее задней части с наибольшим радиусом R (фиг. 2) кривизны. Благодаря этому, апертура (суммарная площадь) АФАР 10 существенно (на ~30%) увеличена, в отличие от прототипа с наклоном излучающей поверхности 11 АФАР 10 к продольной оси корпуса 1, обеспечивающим ее направление в сторону нижней части 4 (на чертежах не показано). Перед полетом БПЛА в систему 7 управления полетом вводятся координаты цели. Подлет БПЛА к цели осуществляется в нормальном положении, фиг. 1, при этом система 7 управления полетом управляет рулевыми элементами 8, согласно заложенной в нее логике управления, например, с измерением полетных перегрузок по осям координат и вычисления по ним положения БПЛА относительно цели (инерциальная система управления). Перед выполнением конечного участка траектории полета система 7 управления полетом, управляя рулевыми элементами 8, обеспечивает поворот БПЛА по крену на 180° (фиг. 3) и включает головку 9 самонаведения, которая посредством излучающей поверхности 11 АФАР 10 обеспечивает электронное (безинерционное) сканирование участков земной поверхности 12 в районе расположения цели, уточняет положение БПЛА относительно цели и, благодаря возможностям управления рулевыми элементами 8 в повернутом по крену положении и работы двигательной установки 6, увеличенной апертуре АФАР 10, обеспечивает уточненную траекторию полета БПЛА на конечном участке.

Похожие патенты RU2698599C1

название год авторы номер документа
БЕСПИЛОТНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ 2018
  • Вдовиченко Андрей Геннадьевич
  • Козин Александр Юрьевич
  • Мищенко Анатолий Петрович
  • Монахов Игорь Олегович
  • Полунин Сергей Павлович
  • Сыздыков Евтулган Кимашевич
  • Шарков Сергей Петрович
RU2699261C1
БЕСПИЛОТНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ 2006
  • Баранников Владимир Николаевич
  • Кликодуев Николай Григорьевич
  • Логузова Елена Николаевна
  • Мальнев Алексей Петрович
  • Мищенко Анатолий Петрович
  • Полонский Зиновий Александрович
  • Побережский Андрей Александрович
  • Селезнев Игорь Сергеевич
  • Семененко Юрий Николаевич
  • Трусов Владимир Николаевич
  • Чернов Леонид Александрович
RU2297950C1
БЕСПИЛОТНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ 2014
  • Мицына Александра Сергеевна
  • Мищенко Анатолий Петрович
  • Полунин Сергей Павлович
RU2565157C1
СПОСОБ СНИЖЕНИЯ РАДИОЛОКАЦИОННОЙ ЗАМЕТНОСТИ ЛЕТАТЕЛЬНОГО АППАРАТА 2014
  • Мицына Александра Сергеевна
  • Мищенко Анатолий Петрович
  • Полунин Сергей Павлович
RU2565158C1
БЕСПИЛОТНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ (ВАРИАНТЫ) 2007
  • Бетковский Юрий Яковлевич
  • Вершинин Геннадий Алексеевич
  • Ефремов Анатолий Михайлович
  • Жаворонков Александр Вячеславович
  • Карпов Сергей Иванович
  • Киреев Александр Филиппович
  • Кликодуев Николай Григорьевич
  • Ковальчук Владимир Антонович
  • Мищенко Анатолий Петрович
  • Смирнов Владимир Нестерович
  • Щеглов Валерий Анатольевич
RU2349508C1
Самонаводящаяся электроракета 2018
  • Бендерский Геннадий Петрович
  • Иванов Константин Александрович
  • Хаметов Рустам Саидович
RU2686550C1
АВИАЦИОННАЯ БОМБА, СТАБИЛИЗИРОВАННАЯ ПО КРЕНУ, С ИНЕРЦИАЛЬНО-СПУТНИКОВОЙ СИСТЕМОЙ НАВЕДЕНИЯ 2006
  • Шахиджанов Евгений Сумбатович
  • Бабушкин Дмитрий Петрович
  • Башкиров Александр Николаевич
  • Владиславлев Лев Гурьевич
  • Жукова Ирина Григорьевна
  • Зенин Юрий Александрович
  • Нарейко Владимир Александрович
  • Никулин Виталий Юрьевич
  • Плещеев Игорь Евгеньевич
  • Солодовник Ольга Борисовна
  • Суслова Юлия Николаевна
  • Титова Наталья Владимировна
  • Ткачев Владимир Васильевич
  • Финогенов Владимир Сергеевич
  • Фомин Валентин Юрьевич
  • Четвериков Лев Леонидович
RU2339904C2
МНОГОЦЕЛЕВАЯ БЕСПИЛОТНАЯ АВИАЦИОННАЯ РАКЕТНАЯ СИСТЕМА 2022
  • Дуров Дмитрий Сергеевич
RU2791754C1
КОМПЛЕКС БОРТОВОЙ АППАРАТУРЫ СИСТЕМ УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ 2005
  • Никольцев Владимир Александрович
  • Коржавин Георгий Анатольевич
  • Подоплёкин Юрий Федорович
  • Симановский Игорь Викторович
  • Войнов Евгений Анатольевич
  • Ицкович Юрий Соломонович
  • Коноплев Владимир Алексеевич
RU2290681C1
СПОСОБ ДОСТАВКИ ПОЛЕЗНОЙ НАГРУЗКИ НА ВОЗДУШНЫЙ ОБЪЕКТ 2022
  • Бобков Сергей Алексеевич
  • Мужичек Сергей Михайлович
  • Корзун Михаил Анатольевич
  • Павлов Владимир Иванович
  • Скрынников Андрей Александрович
  • Борисова Татьяна Михайловна
RU2784492C1

Иллюстрации к изобретению RU 2 698 599 C1

Реферат патента 2019 года СПОСОБ УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ

Способ управления полетом беспилотного летательного аппарата, который снабжен несимметричным корпусом с носовым радиопрозрачным обтекателем, верхняя и нижняя части поверхности которого образуют его ширину, при этом верхняя часть выполнена выпуклой, а нижняя часть уплощенной, полезной нагрузкой, двигательной установкой и системой управления полетом, включающей рулевые элементы и головку самонаведения с активной фазированной антенной решеткой, закрепленной под носовым радиопрозрачным обтекателем с расположением ее излучающей поверхности параллельно поперечной оси корпуса и наклоном к его продольной оси, основанный на введении координат траектории полета в систему управления полетом и управлении рулевыми элементами в полете для обеспечения траектории полета. Перед выполнением конечного участка траектории полета аппарат системой управления поворачивают по крену на 180° и управляют его положением в полете на конечном участке траектории полета в повернутом по крену положении так, что головка самонаведения сканирует земную поверхность. Изобретение направлено на повышение точности траектории полета БПЛА на конечном участке. 3 ил.

Формула изобретения RU 2 698 599 C1

Способ управления полетом беспилотного летательного аппарата, который снабжен несимметричным корпусом с носовым радиопрозрачным обтекателем, верхняя и нижняя части поверхности которого образуют его ширину, при этом верхняя часть выполнена выпуклой, а нижняя часть уплощенной, полезной нагрузкой, двигательной установкой и системой управления полетом, включающей рулевые элементы и головку самонаведения с активной фазированной антенной решеткой, закрепленной под носовым радиопрозрачным обтекателем с расположением ее излучающей поверхности параллельно поперечной оси корпуса и наклоном к его продольной оси, основанный на введении координат траектории полета в систему управления полетом и управлении рулевыми элементами в полете для обеспечения траектории полета, отличающийся тем, что перед выполнением конечного участка траектории полета упомянутый аппарат системой управления поворачивают по крену на 180° и управляют его положением в полете на конечном участке траектории полета в повернутом по крену положении так, что упомянутая головка самонаведения сканирует земную поверхность.

Документы, цитированные в отчете о поиске Патент 2019 года RU2698599C1

БЕСПИЛОТНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ 2006
  • Баранников Владимир Николаевич
  • Кликодуев Николай Григорьевич
  • Логузова Елена Николаевна
  • Мальнев Алексей Петрович
  • Мищенко Анатолий Петрович
  • Полонский Зиновий Александрович
  • Побережский Андрей Александрович
  • Селезнев Игорь Сергеевич
  • Семененко Юрий Николаевич
  • Трусов Владимир Николаевич
  • Чернов Леонид Александрович
RU2297950C1
МАЛОЗАМЕТНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ 2012
  • Йохен Дорнвальд
  • Бартоломеус Бихлер
RU2599198C2
US 0009614272 B2, 04.04.2017
БЕСПИЛОТНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ 2006
  • Баранников Владимир Николаевич
  • Кликодуев Николай Григорьевич
  • Логузова Елена Николаевна
  • Мальнев Алексей Петрович
  • Мищенко Анатолий Петрович
  • Полонский Зиновий Александрович
  • Побережский Андрей Александрович
  • Селезнев Игорь Сергеевич
  • Семененко Юрий Николаевич
  • Трусов Владимир Николаевич
  • Чернов Леонид Александрович
RU2297950C1
МАЛОЗАМЕТНЫЙ ЛЕТАТЕЛЬНЫЙ АППАРАТ 2012
  • Йохен Дорнвальд
  • Бартоломеус Бихлер
RU2599198C2
US 0009614272 B2, 04.04.2017.

RU 2 698 599 C1

Авторы

Вдовиченко Андрей Геннадьевич

Козин Александр Юрьевич

Мищенко Анатолий Петрович

Монахов Игорь Олегович

Полунин Сергей Павлович

Сыздыков Евтулган Кимашевич

Шарков Сергей Петрович

Даты

2019-08-28Публикация

2018-11-06Подача