Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для утилизации возобновляемых, вторичных тепловых энергоресурсов и низкопотенциальной тепловой энергии природных источников, а именно, для трансформации тепловой энергии в электрическую.
Более близким по технической сущности к предлагаемому изобретению является термоэлектрический преобразователь термоэмиссионной системы электроснабжения здания состоящий из прямоугольного полого корпуса, выполненного из материала–диэлектрика с высокой теплопроводностью, армированного контурной арматурой, между крышкой и днищем которого имеется замкнутая воздушная полость, контурная арматура состоит из элементов, представляющих собой парные проволочные отрезки, выполненные из разных металлов М1 и М2 и спаянные на концах между собой, образующие зигзагообразные ряды, устроенные таким образом, что левые и правые части проволочных отрезков со спаянными концами согнуты под углом 900 и располагаются в слоях материала– диэлектрика крышки и днища, параллельно их поверхности не касаясь ее, а средние части парных проволочных отрезков расположены в воздушной полости, крайние проволочные отрезки крайних зигзагообразных рядов соединены с однополюсными коллекторами электрических зарядов, которые, в свою очередь, соединены с электрическим аккумулятором [Патент РФ №2499107, МКП E04 C2/26, 2013].
Основным недостатком известного термоэлектрического преобразователя термоэмиссионной системы электроснабжения здания является зигзагообразная компоновка термоэмиссионных элементов с изгибом их спаев под углом 900 и обусловленная этим малое количество термоэмиссионных элементов на единице его площади и низкая удельная производительность по выработке термоэлектричества, что снижает его эффективность.
Более близким по технической сущности к предлагаемому изобретению является универсальный термоэлектрический преобразователь, содержащий корпус, выполненный из материала–диэлектрика с высокой теплопроводностью, оребренный с противоположных сторон параллельными ребрами, образующими между собой пазы, изнутри армированный контурной арматурой, которая состоит из термоэлектрических элементов, представляющих собой парные параллельные проволочные отрезки, выполненные из разных металлов М1 и М2, изолированные друг от друга по длине тонким слоем материала–диэлектрика, спаянные на концах между собой, образующие ряды, устроенные таким образом, что левые и правые части спаянных концов проволочных отрезков со спаянными концами располагаются в слоях материала– диэлектрика параллельных ребер, параллельно их боковой поверхности, не касаясь ее, а средние части проволочных отрезков расположены в массиве материала–диэлектрика корпуса, ряды соединены между собой перемычками, крайние проволочные отрезки крайних рядов соединены с однополюсными коллекторами электрических зарядов, которые, в свою очередь, соединены с электрическим аккумулятором, причем в пазах между ребрами размещена решетка, состоящая из рамки с продольными полосами, зеркально отражающая пазы корпуса, выполненная из материала с высокой теплопроводностью [Патент РФ №2575769, МКП E04 C2/26, 2016].
Основными недостатками известного универсального термоэлектрического преобразователя является размещение термоэмиссионных элементов в массиве материала–диэлектрика корпуса, что усложняет конструкции устройства и снижает разность температур на противоположных спаях термоэмиссионных элементов, генерация термоэлектричества незначительной силы тока, обусловленная компоновкой термоэмиссионных элементов, что, в конечном счете, снижает его эффективность.
Техническим результатом предлагаемого изобретения является повышение эффективности переносного термоэлектрогенератора.
Технический результат достигается переносным термоэлектрогенератором, включающим, перфорированный с бортов корпус и крышку, выполненные из материала–диэлектрика с высокой теплопроводностью, оребренные сверху и снизу параллельными ребрами, образующими с внутренних сторон корпуса и крышки пазы, в полости корпуса помещены термоэлектрические элементы, представляющих собой парные проволочные отрезки, выполненные из разных металлов М1 и М2, изолированные друг от друга по длине тонким слоем материала–диэлектрика, сплющенные и спаянные на концах между собой, образуя ряды, устроенные таким образом, что верхние и нижние спаи нескольких параллельных рядов каждого термоэлектрического элемента соединены между собой параллельно секционными коллекторами, представляющими собой две пластины, выполненные из металла с высокой электропроводностью, между которыми зажаты спаи термоэмиссионных элементов, образуя термоэлектрические секции, правые и левые крайние секционные коллекторы каждой термоэлектрической секции соединены через перемычки с однополюсными коллекторами электрических зарядов, в свою очередь, соединены с электрическим аккумулятором, при этом секционные коллекторы располагаются в пазах параллельных ребер, параллельно их боковой поверхности, плотно прижимаясь к ним, а средние части проволочных отрезков расположены в полости корпуса.
На фиг. 1–6 представлен предлагаемый переносной термоэлектрогенератор (ПТЭГ). На фиг. 1– общий вид в сборе, на фиг. 2, 3 – разрезы ПТЭГ, на фиг. 4–6 – основные узлы ПТЭГ.
Предлагаемый переносной термоэлектрогенератор (ПТЭГ) содержит перфорированный с бортов (перфорация на фиг. 1–6 не показана) корпус 1 и крышку 2, выполненные из материала–диэлектрика с высокой теплопроводностью, оребренные сверху и снизу параллельными ребрами 3, образующими с внутренних сторон корпуса 1 и крышки 2 пазы 4, в полости корпуса 1помещены термоэлектрические элементы (ТЭЭ) 5, представляющих собой парные проволочные отрезки 6 и 7, выполненные из разных металлов М1 и М2, изолированные друг от друга по длине тонким слоем материала–диэлектрика, сплющенные и спаянные на концах между собой, образующие ряды 8, устроенные таким образом, что верхние и нижние спаи нескольких параллельных рядов 8 каждого ТЭЭ 5 соединены между собой параллельно секционными коллекторами 9, представляющими собой две пластины 10 и 11, выполненными из металла с высокой электропроводностью, между которыми зажаты спаи ТЭЭ 5, образуя термоэлектрические секции (ТЭС) 12, правые и левые крайние секционные коллекторы 9 каждой ТЭС 12 соединены через перемычки 13 с однополюсными коллекторами электрических зарядов 14 и 15, которые, в свою очередь, соединены с электрическим аккумулятором (на фиг. 1–6 не показан) при этом секционные коллекторы 9 располагаются в пазах 4 параллельных ребер 2, параллельно их боковой поверхности, плотно прижимаясь к ним, а средние части проволочных отрезков 6 и 7 расположены в полости корпуса 1.
В основу работы предлагаемого ПТЭГ положено следующее. Так как термоэмиссионные элементы 5 изготовлены из парных проволочных отрезков 6 и 7, выполненных из разных металлов М1 и М2, спаянных на концах между собой, то при нагреве (охлаждении) одних спаянных концов проволочных отрезков 6 и 7 термоэмиссионных элементов 5 с одной стороны и охлаждении (нагреве) противоположных им спаянных концов, на них устанавливаются разные температуры и в зоне контакта (спае) металлов М1 и М2 происходит термическая эмиссия электронов, в результате чего в рядах 8 ТЭС 12 появляется термоэлектричество [С.Г. Калашников. Электричество. – М: «Наука», 1970, с. 502–506].
ПТЭГ работает следующим образом. При соприкосновении ребер 2 одной стороны корпуса 1 с холодной средой, а ребер 2 противоположной стороны корпуса 1 с горячей средой ( ребра 2 выполнены из материала с высокой теплопроводностью и в них размещены секционные коллекторы 9 со спаями проволочных отрезков 6 и 7 ТЭЭ 5 УТЭГ), секционные коллекторы 9 совместно со спаями ТЭЭ 5 с одной стороны охлаждаются, а с противоположной стороны корпуса 1 нагреваются, на них устанавливаются разные температуры, происходит процесс передачи тепла от горячей среды к холодной. Одновременно с процессом теплопередачи, в результате разности температур охлажденных и нагретых спаянных концов проволочных отрезков 6 и 7, выполненных из металлов М1 и М2 ТЭЭ 5, в рядах 8, ТЭС 12 появляется термоэлектричество, которое через перемычки 13 и однополюсные коллекторы электрических зарядов 14 и 15 (размещение коллекторов 14 и 15 на фиг. 1–6 показано условно), поступает в электрический аккумулятор (на фиг. 1–6 не показан), откуда подается потребителю.
При этом, параллельное соединение нескольких рядов 8 секционными коллекторами 9, представляющими собой верхние и нижние кромки ТЭС 12, выполненная из пластин металла с высокой теплопроводностью 10 и 11, позволяет увеличить количество переходящего тепла за счет повышенной площади их контакта с зонами нагрева и охлаждения и высокой площади контакта сплющенных слоев самих металлов М1 и М2, соединенных между собой (например, спайкой или сваркой). Кроме того, наличие перфорации в бортах корпуса 1 и незаполненной полости между днищем корпуса 1 и крышкой 2, позволяет проводить естественную вентиляцию внутри корпуса 1, что также интенсифицирует процесс теплопередачи между верхними и нижними спаями ТЭЭ 5. Поэтому, в результате интенсификации теплообменных процессов, создается более высокая разность температур на противоположных спаях ТЭЭ 5 и происходит более быстрый процесс теплообмена между ними, увеличивая тем самым выработку термоэлектричества. Кроме того, параллельное соединение нескольких рядов 8 в одну ТЭС 12 секционными коллекторами 9 и параллельное соединение ТЭС 12 через однополюсные коллекторы электрических зарядов 14 и 15 позволяет снизить электрическое сопротивление всех элементов устройства и получать более высокую силу тока на выходе из ПТЭГ.
Помимо вышеприведенных положительных качеств, конструкция предлагаемого ПТЭГ обеспечивает возможность замены вышедших из строя термоэмиссионных элементов 5 или термоэлектрических секций 12 без разрушения корпуса 1 и смежных термоэлектрических секций 12 (достаточно снять крышку 2), а также перемещать и устанавливать его в различных местах, что повышает его надежность и эффективность.
Величина разности электрического потенциала на коллекторах 14 и 15 и сила электрического тока также зависит от характеристик пар металлов М1 и М2, из которых изготовлены проволочные отрезки 6 и 7, числа их пар в рядах 8 и их числа в ПТЭГ, разности температур на противоположных спаянных концах элементов М1 и М2 и количества ПТЭГ в случае их компоновки в один источник ЭДС. Полученный электрический ток из одиночного ПТЭГ, можно использовать для подзарядки мобильных телефонов, айфонов, плэйеров и тому подобных устройств в условиях отсутствия электроснабжения (например, при подогреве на костре, поместив его на дно пустой емкости или положив его на освещаемый солнцем участок льда или снега). При компоновке множества ПТЭГ в один источник ЭДС, полученный электрический ток можно использовать для самых различных целей (освещения зданий, горячего водоснабжения, зарядки автомобильных аккумуляторов, электроснабжения космических и подводных аппаратов и пр.), при условии наличия сред или поверхностей с различными температурами.
Таким образом, предлагаемый ПТЭГ обеспечивает, как в летнее так и зимнее время, получение электрической энергии в различных местах и количествах, которую можно использовать для различных целей.
название | год | авторы | номер документа |
---|---|---|---|
Комплексный коррозионноустойчивый воздухоподогреватель | 2018 |
|
RU2691896C1 |
Комплексный шахтный воздухоподогреватель | 2021 |
|
RU2762927C1 |
Плоский термоэлектрогенератор | 2024 |
|
RU2823390C1 |
Слоевой пластинчатый термоэлектрогенератор | 2019 |
|
RU2701883C1 |
Компактный термоэлектрический генератор | 2017 |
|
RU2650758C1 |
Компактный термоэлектрогенератор | 2017 |
|
RU2654980C1 |
Ленточный термоэлектрогенератор | 2017 |
|
RU2676803C1 |
Инфракрасная горелка-электрогенератор | 2019 |
|
RU2718363C1 |
Стержневой термоэлектрогенератор | 2021 |
|
RU2773632C1 |
Термоэлектрическое зарядное устройство для гаджетов | 2016 |
|
RU2645872C1 |
Изобретение относится к преобразованию тепловой энергии в электрическую. Технический результат: повышение эффективности термоэлектрогенератора. Сущность: термоэлектрогенератор содержит перфорированный с бортов корпус и крышку, выполненные из материала–диэлектрика с высокой теплопроводностью, оребренные сверху и снизу параллельными ребрами, образующими с внутренних сторон корпуса и крышки пазы. В полости корпуса помещены термоэлектрические элементы, представляющие собой парные проволочные отрезки, выполненные из разных металлов М1 и М2, изолированные друг от друга по длине тонким слоем материала–диэлектрика, сплющенные и спаянные на концах между собой, образуя ряды, устроенные таким образом, что верхние и нижние спаи нескольких параллельных рядов каждого термоэлектрического элемента соединены между собой параллельно секционными коллекторами, представляющими собой две пластины, выполненные из металла с высокой электропроводностью. Между коллекторами зажаты спаи термоэмиссионных элементов, образуя термоэлектрические секции. Правые и левые крайние секционные коллекторы каждой термоэлектрической секции соединены через перемычки с однополюсными коллекторами электрических зарядов, которые соединены с электрическим аккумулятором. Секционные коллекторы располагаются в пазах параллельных ребер параллельно их боковой поверхности, плотно прижимаясь к ним. Средние части проволочных отрезков расположены в полости корпуса. 6 ил.
Переносной термоэлектрогенератор, включающий корпус с днищем, оребренным параллельными ребрами и выполненным из материала-диэлектрика с высокой теплопроводностью, в котором помещены термоэлектрические элементы, представляющие собой парные проволочные отрезки, изолированные друг от друга по длине тонким слоем материала-диэлектрика, выполненные из разных металлов M1 и М2, спаянные на концах между собой, образуя ряды, соединенные между собой перемычками, крайние из которых соединены с однополюсными коллекторами электрических зарядов, соединенными, в свою очередь, с электрическим аккумулятором, отличающийся тем, что корпус выполнен полым и снабжен крышкой, оребренной с наружной стороны параллельными ребрами, образующими с внутренней стороны пазы, концы термоэмиссионных элементов сплющены, ряды термоэлектрических элементов устроены таким образом, что верхние и нижние спаи нескольких параллельных рядов каждого термоэмиссионного элемента соединены между собой параллельно секционными коллекторами, представляющими собой две пластины, выполненные из металла с высокой электропроводностью, между которыми зажаты спаи термоэмиссионных элементов, образуя термоэлектрические секции, правые и левые крайние секционные коллекторы каждой термоэлектрической секции соединены через перемычки с однополюсными коллекторами электрических зарядов, при этом секционные коллекторы располагаются в пазах параллельных ребер, параллельно их боковой поверхности, плотно прижимаясь к ним, а средние части проволочных отрезков термоэлектрических элементов расположены в полости корпуса.
УНИВЕРСАЛЬНЫЙ ТЕРМОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ | 2014 |
|
RU2575769C1 |
Компактный термоэлектрогенератор | 2017 |
|
RU2654980C1 |
ГОРЕЛКА-ЭЛЕКТРОГЕНЕРАТОР | 2015 |
|
RU2599088C1 |
JP 2006100334 A, 13.04.2006 | |||
WO 2011162726 A1, 29.12.2011. |
Авторы
Даты
2019-09-02—Публикация
2018-12-04—Подача