Изобретение относится к области приема и преобразования лазерного излучения и может быть использовано для регистрации лазерного излучения, воздействующего на космический аппарат (КА).
Известно защищенное патентом изобретение - аналог: патент №2506547, заявка 2012140350/28 МПК G01J 1/44, 2012 год «Приемник импульсных оптических сигналов» (Вильнер В.Г., Волобуев В.Г., Почтарев В.Л., Рябокуль Б.К.). Изобретение относится к технике приема импульсного оптического излучения, преимущественно к приемникам импульсных лазерных дальномеров и подобных устройств для измерения временных интервалов между оптическими импульсами. Приемник импульсных оптических сигналов, содержащий фотоприемник с источником смещения и нагрузкой, подключенной к усилителю, усилитель выполнен в виде двух транзисторных повторителей с общей нагрузкой, вход одного из повторителей подключен к нагрузке фотоприемника, а вход второго повторителя имеет возможность подключения к внешнему источнику сигнала, причем параллельно входам транзисторных повторителей введены ключи, связанные с коммутатором, управляющим их замыканием и размыканием в противофазе. Технический результат заключается в повышении точности временной привязки принятого сигнала и, соответственно, высокой точности измерений с помощью приборов, в которых используется такой приемник. Недостатком изобретения является невозможность его использования, когда не известно направление воздействия лазерного излучения.
Известно защищенное патентом изобретение - аналог: патент №2566370, заявка 2013138906/28 МПК G01J 5/58, 2013 год «Космический приемник - преобразователь лазерного излучения» (Корнилов В.А., Тугаенко В.Ю., Мацак И.С.). Изобретение относится к области создания приемников - преобразователей на основе полупроводниковых фотоэлектрических преобразователей для преобразования электромагнитной энергии лазерного излучения высокой плотности. Заявлена конструкция космического приемника-преобразователя лазерного излучения в двух вариантах исполнения. В первом варианте приемник-преобразователь выполнен в виде трех взаимно перпендикулярных круговых панелей с точкой пересечения, совпадающей с их геометрическими центрами; каждая круговая панель с двух сторон представляет приемную плоскость, на которой установлены фотоэлектрические преобразователи. Тыльные контакты фотоэлектрических преобразователей охлаждаются радиальными прямолинейными, дугообразными и периферийными дугообразными тепловыми трубами. Второй вариант отличается от первого конструкцией тепловых труб: применяются V-образные и дугообразные тепловые трубы. Техническим результатом является повышение мощности и эффективности приемника-преобразователя, повышение КПД преобразования, надежности и ресурса работы. Недостатком изобретения состоит в том, что космический приемник-преобразователь лазерного излучения ориентирован только на прием сигналов излучения высокой интенсивности.
Известно защищенное патентом изобретение - аналог: заявка №2011148951/11, МПК G01S 17/00, 2011 год, патент №2494415, «Способ обнаружения пассивного космического объекта при сближении с ним активного космического аппарата» (Старовойтов Е.И., Афонин В.В.). Способ включает сканирование пространства путем разворота активного КА с жестко установленной на нем лазерной локационной станции (ЛЛС) по каналу тангажа или курса до обнаружения пассивного КА. Ширина диаграммы направленности зондирующего излучения ЛЛС в направлении сканирования минимальна, а в перпендикулярном направлении угол ее расходимости равен угловому размеру зоны обзора. Обнаружение пассивного КА осуществляют в мгновенном поле зрения многоэлементного приемника излучения ЛЛС. Это поле совпадает с диаграммой направленности ЛЛС. Техническим результатом изобретения является повышение надежности за счет исключения оптико-механического сканирования с использованием движущихся деталей. Недостатком способа-аналога является низкая оперативность сканирования, которое осуществляется путем разворота активного КА.
Известно заявленное изобретение - аналог: патент №2619168, от 07.12.2015, «Способ определения направления на активный объект, преднамеренно сближающийся с космическим аппаратом» (Яковлев М.В. и др.), согласно которому принимают сигналы, излучаемые приближающимся активным объектом, измеряют амплитуду и выполняют обработку принимаемых сигналов. Для приема сигналов применяют детекторы плоской формы. Детекторы располагают на поверхности сферической оболочки ортогонально радиус-вектору из центра сферической оболочки к точке касания с детектором. Внутри сферической оболочки помещают материал - поглотитель излучения. Направление на активный приближающийся объект определяют по радиус-вектору, направленному на детектор с максимальной амплитудой регистрируемого сигнала. Недостатком способа - аналога является невозможность одновременной регистрации лазерного излучения в различных диапазонах электромагнитного спектра.
Известно заявленное изобретение - прототип: патент №2653149, от 25.05.2017, «Всенаправленный многоспектральный измеритель лазерного излучения» (Яковлев М.В., Яковлев Д.М.), согласно которому измеритель содержит детекторы плоской формы, расположенные на поверхности сферической оболочки, а также материал - поглотитель излучения внутри сферической оболочки. Детекторы выполнены в виде набора плоских регистрирующих элементов, обладающих различной спектральной чувствительностью и контактирующих между собой через слой изолирующего материала. Реализуемость заявляемого всенаправленного многоспектрального измерителя лазерного излучения подтверждается наличием известных технологий создания и опытом практического применения полупроводниковых фотонных приемников излучения ультрафиолетового, видимого и ближнего инфракрасного (с граничной длиной волны до 1,2 мкм) диапазонов спектра (см., например, монографию: А.В. Войцеховский, И.И. Ижнин, В.П. Савчин, Н.М. Вакив - Физические основы полупроводниковой фотоэлектроники, Томск, Издательский Дом Томского государственного университета, 2013. 560 с.). Недостатком способа-прототипа является сложность конструкции измерителя в виде сферической оболочки, на поверхности которой располагаются детекторы плоской формы, и его значительные весогабаритные характеристики.
Целью предлагаемого изобретения является определение направления на источник лазерного излучения при снижении весогабаритных характеристик измерительного прибора.
Указанная цель достигается в заявляемом способе определения направления на источник лазерного излучения, согласно которому лазерное излучение регистрируют светочувствительными элементами и определяют направление на источник излучения по результатам обработки зарегистрированных сигналов. Светочувствительные элементы объединяют в плоскую матрицу, устанавливают светонепроницаемый цилиндр в центре матрицы ортогонально ее поверхности, диаметр цилиндра выбирают порядка поперечного размера светочувствительного элемента, высоту цилиндра выбирают из условия попадания тени цилиндра на поверхность матрицы при изменении угла падения лазерного излучения в заданных пределах.
Обоснование реализуемости и практической значимости заявляемого способа заключается в следующем. При воздействии лазерного излучения на поверхности плоской матрицы образуется область тени от цилиндра, расположенного в центре матрицы. Положение тени однозначно идентифицируется по разности показаний светочувствительных элементов, одни из которых освещены, а другие находятся в области тени. Направление тени на поверхности матрицы определяет азимутальное направление действующего лазерного луча. Угол падения луча относительно нормали к поверхности матрицы определяется из тригонометрии по отношению высоты цилиндра и протяженности его тени на поверхности матрицы. Совокупность данных по азимутальному направлению и углу падения лазерного луча на поверхность матрицы однозначно определяют направление на источник действующего лазерного излучения. Высоту цилиндра выбирают из условия попадания тени цилиндра на поверхность матрицы при изменении угла падения лазерного излучения в заданных пределах, поэтому при наблюдении в пределах азимутального угла 180° рациональной формой внешнего контура матрицы могут быть многоугольник или окружность. Заявляемый способ может быть реализован при меньших весогабаритных характеристиках измерительного прибора по сравнению с прототипом.
Таким образом, техническая возможность реализации, практическая значимость и положительный эффект заявляемого способа определения направления на источник лазерного излучения не вызывают сомнений.
Изобретение относится к области приема и преобразования лазерного излучения и может быть использовано для регистрации лазерного излучения, воздействующего на космический аппарат (КА). Заявлен способ определения направления на источник лазерного излучения, согласно которому лазерное излучение регистрируют светочувствительными элементами и определяют направление на источник излучения по результатам обработки зарегистрированных сигналов. Для определения направления на источник лазерного излучения при снижении весогабаритных характеристик измерительного прибора светочувствительные элементы объединяют в плоскую матрицу, устанавливают светонепроницаемый цилиндр в центре матрицы ортогонально ее поверхности, диаметр цилиндра выбирают порядка поперечного размера светочувствительного элемента, высоту цилиндра выбирают из условия попадания тени цилиндра на поверхность матрицы при изменении угла падения лазерного излучения в заданных пределах. Технический результат – определение направления на источник лазерного излучения при снижении весогабаритных характеристик измерительного прибора.
Способ определения направления на источник лазерного излучения, согласно которому лазерное излучение регистрируют светочувствительными элементами и определяют направление на источник излучения по результатам обработки зарегистрированных сигналов, причем светочувствительные элементы объединяют в плоскую матрицу, устанавливают светонепроницаемый цилиндр в центре матрицы ортогонально ее поверхности, диаметр цилиндра выбирают порядка поперечного размера светочувствительного элемента, высоту цилиндра выбирают из условия попадания тени цилиндра на поверхность матрицы при изменении угла падения лазерного излучения в заданных пределах.
Всенаправленный многоспектральный измеритель лазерного излучения | 2017 |
|
RU2653149C1 |
Способ определения направления на активный объект, преднамеренно сближающийся с космическим аппаратом | 2015 |
|
RU2619168C1 |
КОСМИЧЕСКИЙ ПРИЕМНИК-ПРЕОБРАЗОВАТЕЛЬ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ | 2013 |
|
RU2566370C2 |
WO 2005024454 A2, 17.03.2005 | |||
US 5319188 A, 07.06.1994. |
Авторы
Даты
2019-09-02—Публикация
2018-12-25—Подача