Изобретения относятся к области электротехники и электроэнергетике, а именно, к локализации источников повышенной эмиссии кондуктивных помех в шкафах комплектного устройства защиты, автоматики и управления. Может быть использовано в испытательных лабораториях в процессе приведения в соответствии установленным нормативным требованиям помехоэмиссии по цепи электропитания шкафа.
В настоящее время на электроэнергетических объектах широко применяются шкафы комплектных устройств защиты, автоматики и управления. Эти устройства подвергаются обязательным испытаниям на соответствие требованиям электромагнитной совместимости (ЭМС) с проведением измерений помехоэмиссии в соответствие установленным методам (ГОСТ 30805.22-2013 (CISPR 22:2006). «Межгосударственный стандарт. Совместимость технических средств электромагнитная. Оборудование информационных технологий. Радиопомехи индустриальные нормы и методы измерений», п. 5, рис. 8).
Известный способ принят за прототип. Способ предусматривает измерение напряжения индустриальных радиопомех (ИРП) на сетевых зажимах порта электропитания шкафа с помощью измерительного приемника, обеспечивающего измерение среднего и квазипикового значений напряжения помехоэмиссии, и эквивалента сети, обеспечивающего в точке измерения на вилке сетевого кабеля полное сопротивления 50 Ом.
Измеренное напряжение ИРП сопоставляют с установленными пределами (нормами) для соответствующего класса технических средств. В том случае, когда напряжение ИРП на сетевых зажимах превышает установленные пределы, выявляются источники повышенной помехоэмиссии, например, путем последовательного отключения (обесточивания) блоков комплектного устройства и последующего измерения напряжения ИРП на сетевых зажимах шкафа. По результатам сопоставления последних измерений с измерениями напряжения ИРП в исходной схеме шкафа можно с некоторым приближением локализовать блоки комплектного устройства, действия которых обуславливают повышенное напряжение помехоэмиссии шкафа комплектного устройства.
Способ реализован с помощью устройства, содержащего эквивалент сети, шкаф комплектного устройства с функциональными блоками, измерительный приемник.
Недостаток известного способа и устройства, с помощью которого способ осуществляется, заключается в следующем. Во - первых, отключение тех или иных функциональных блоков комплектного устройства обуславливает нарушение исходной схемы шкафа и потерю его функциональности, что может быть допустимым не для любого шкафа комплектного устройства защиты, автоматики и управления. Во-вторых, при реализации технического решения последующий анализ оказывается достаточно сложным по причине зависимости процесса помехоэмиссии шкафа от условий компоновки (местоположения), монтажа и режимов взаимодействующих функциональных блоков комплектного устройства. Указанные факторы обуславливают низкую эффективность технического решения и ограничивают область его применения.
Задачей изобретения является создание способа и устройства для его реализации, с помощью которых возможно достаточно точно и надежно локализовать местоположение источника повышенной эмиссии кондуктивных помех в шкафу комплектного устройства без нарушения целостности соединений функциональных блоков комплектного устройства.
Технический результат заключается в повышении надежности локализации и расширении области применения.
Указанный технический результат достигается тем, что в способе локализации источников повышенной эмиссии кондуктивных помех в шкафу комплектного устройства, заключающимся в том, что измеряют напряжение помехоэмиссии в цепи электропитания шкафа комплектного устройства и определяют области частот, где измеренное напряжение помехоэмиссии превышает установленные пределы, измеряют токи помехоэмиссии в цепях электропитания функциональных блоков шкафа комплектного устройства, сопоставляют измеренные токи помехоэмиссии по уровню в областях частот, где напряжение помехоэмиссии в цепи электропитания шкафа комплектного устройства превышает установленные пределы, и локализуют функциональные блоки шкафа комплектного устройства с наиболее высокими уровнями тока помехоэмиссии в упомянутых областях частот, как источники превышения напряжения помехоэмиссии шкафа комплектного устройства установленных пределов.
Технический результат заявляемого устройства для осуществления способа достигается тем, что, в устройство, содержащее шкаф комплектного устройства с функциональными блоками, измерительный приемник и эквивалент сети, вход которого соединен с сетью электропитания, а его первый выход соединен с портом электропитания шкафа комплектного устройства, введен многоканальный коммутатор, а в шкаф комплектного устройства введены токовые пробники, число которых равно числу функциональный блоков комплектного устройства, соединенных соответствующими кабелями электропитания с портом электропитания шкафа комплектного устройства, при этом каждый кабель электропитания указанных функциональных блоков комплектного устройства охвачен соответствующим токовым пробником, входы введенного многоканального коммутатора соединены с выходами токовых пробников и вторым выходом эквивалента сети, выход введенного многоканального коммутатора соединен со входом измерительного приемника.
Сопоставительный анализ заявленного решения с известным прототипом показывает, что заявленное техническое решение позволяет локализовать источники помехоэмиссии без нарушения целостности исходной электрической схемы шкафа комплектного устройства и, следовательно, с сохранением режимов по внешним и внутренним цепям электропитания шкафа. В результате использования корректных измерений эмиссии кондуктивных помех существенно упрощается последующий анализ для процесса локализации местоположения источников повышенной помехоэмиссии, в том числе, и в шкафах комплектного устройства, в которых недопустимо обесточивание функциональных блоков. Это обуславливает повышенную эффективность и расширенную область применения заявленного технического решения.
На фиг. 1 приведена электрическая схема устройства для осуществления заявленного способа.
На фиг. 2 - график напряжения помехоэмиссии в цепи электропитания шкафа комплектного устройства.
На фиг. 3 и 4 - графики токов помехоэмисии, измеренных в цепях электропитания соответственно первого и второго функциональных блоков.
Способ локализации источников повышенной эмиссии кондуктивных помех в шкафу комплектного устройства, заключаются в том, что измеряют напряжение помехоэмиссии в цепи электропитания шкафа комплектного устройства и определяют области частот, где измеренное напряжение помехоэмиссии превышает установленные пределы. Измеряют токи помехоэмиссии в цепях электропитания функциональных блоков шкафа комплектного устройства, сопоставляют измеренные токи помехоэмиссии по уровню в областях частот, где напряжение помехоэмиссии в цепи электропитания шкафа комплектного устройства превышает установленные пределы, и локализуют функциональные блоки шкафа комплектного устройства с наиболее высокими уровнями тока помехоэмиссии в упомянутых областях частот, как источники превышения напряжения помехоэмиссии шкафа комплектного устройства установленных пределов.
Устройство для осуществления способа содержит: эквивалент сети 1, подключенный входом к сети электропитания; шкаф 2 комплектного устройства с функциональными блоками 3, 4, 5; токовые пробники 6, 7, 8, охватывающие кабели электропитания функциональных блоков 3, 4, 5; многоканальный коммутатор 9; измерительный приемник 10, подключенный входом к выходу многоканального коммутатора 9. Первый выход эквивалента сети 1 подключен к порту 11 электропитания шкафа 2 комплектного устройства, к которому подключены кабели электропитания функциональных блоков 3, 4, 5, второй выход эквивалента сети 1 и выходы токовых пробников 6, 7, 8 подключены к соответствующим входам многоканального коммутатора 9, заземленный корпус эквивалента сети 1 соединен с корпусом шкафа 2 комплектного устройства.
Процесс по локализации источников помех инициируется при испытании шкафа на помехоэмиссию. Шкаф комплектного устройства 2 питается от эквивалента сети 1, который обеспечивает стабильное значение полного сопротивления 50 Ом в точке измерения на сетевом кабеле электропитания шкафа. Вначале многоканальный коммутатор 7 устанавливается в положение, при котором вход измерительного приемника 6 соединяется с вторым выходом эквивалента сети 1. С помощью измерительного приемника 6 измеряются среднее и квазипиковое значения напряжение помехоэмиссии в цепи электропитания шкафа 2 комплектного устройства. Результаты измерений сравниваются с пределами, установленными ГОСТ 30805.22-2013 для соответствующего класса технических средств. Определяются области частот, где напряжение помехоэмисссии превышает соответствующие пределы.
Следующими положениями многоканального коммутатора 7, вход измерительного приемника 6 подключается поочередно к выходам токовых пробников 6, 7, 8 и измеряются средние и квазипиковые значения токов помехоэмиссии в цепях электропитания функциональных блоков 3, 4, 5. Измеренные токи помехоэмиссии функциональных блоков 3, 4, 5 сопоставляются между собой по максимальным уровням средних и квазипиковых значений, зафиксированных в окрестностях частот, где соответствующие значения напряжения помехоэмиссии превышает установленные пределы. В результате сопоставительного анализа определяются (локализуются) электрические и монтажные участки в конструктиве шкафа, где функционируют функциональные блоки, которые с определенной вероятностью могут быть соотнесены к источникам, создающим повышенное напряжение помехоэмиссии в цепи электропитания шкафа 2 комплектного устройства.
В том случае, если в указанной области частот ток помехоэмиссии одного из функциональных блоков оказывается существенно выше (на 5-10 дБ), чем у остальных блоков комплектного устройства, то с высокой вероятностью этот блок представляется источником повышенного напряжения помехоэмиссии в цепи электропитания шкафа 2 комплектного устройства. Следовательно, все последующие мероприятия по приведению шкафа комплектного устройства в соответствие нормативным требованиям помехоэмиссии могут ограничиваться корректировкой условий размещения, установки и монтажа применительно к одному блоку. Причем, не исключается, что требуемое снижение напряжения помехоэмиссии возможно лишь путем замены этого блока аналогичным по функциональному назначению с более высокими характеристиками в части эмиссии кондуктивных помех.
В примере практического исполнения устройства для локализации источников эмиссии кондуктивных помех в типовом шкафу комплектного устройства релейной защиты и автоматики выключателя, состоящего из двух функциональных блоков, использованы: эквивалент сети ESH2-Z5, токовый пробник EZ-17, коммутатор SC1000M1 и измерительный приемник ESR-7.
На характеристике напряжения помехоэмиссии в цепи электропитания шкафа комплектного устройства (см. фиг. 2), снятой измерительным приемником с использованием детектора квазипикового значения, выбрана область частот в окрестности 210 кГц, где уровень напряжения помехоэмиссии превышает норму класса А - 80 дБмкВ. В той же области частот максимальные уровни токов помехоэмиссии функциональных блоков составляют: для первого блока - 24 дБмкА (фиг. 3); для второго блока - 33 дБмкА (см. фиг. 4).
Уровень тока помехоэмиссии в цепи электропитания второго функционального блока значительно выше, чем в цепи электропитания первого функционального блока (почти на 10 дБ). Следовательно, местоположение источника повышенного напряжения помехоэмиссии шкафа комплектного устройства соотносится с местом установки и монтажа второго функционального блока. Последующий аналитический разбор показал, что причиной повышенной помехоэмиссии неблагоприятные установочно-монтажные условия является второго функционального блока.
Таким образом, заявляемые изобретения обеспечивают возможность достаточно точно и надежно локализовать источники помехоэмиссии в шкафах комплектного устройства различного исполнения без нарушения целостности исходной электрической монтажной схемы в конструктиве шкафа, что обуславливает более широкую область их применения, чем ранее известные решения.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ЛОКАЛИЗАЦИИ ИСТОЧНИКОВ ПОВЫШЕННОЙ ЭМИССИИ КОНДУКТИВНЫХ ПОМЕХ ШКАФА КОМПЛЕКТНОГО УСТРОЙСТВА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2019 |
|
RU2699390C1 |
АППАРАТНО-ПРОГРАММНЫЙ КОМПЛЕКС ДЛЯ СИНТЕЗА И ИСПЫТАНИЙ ОПТИМАЛЬНОЙ СЕТИ ВЫСОКОВОЛЬТНОГО ЭЛЕКТРОПИТАНИЯ | 2019 |
|
RU2728325C1 |
СПОСОБ ДИАГНОСТИРОВАНИЯ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2007 |
|
RU2339938C1 |
АБОНЕНТСКАЯ СТАНЦИЯ ДЛЯ ШИННОЙ СИСТЕМЫ И СПОСОБ УМЕНЬШЕНИЯ КОНДУКТИВНОЙ ПОМЕХОЭМИССИИ В ШИННОЙ СИСТЕМЕ | 2014 |
|
RU2684164C2 |
СПОСОБ ОЦЕНКИ ПОМЕХ В СИСТЕМАХ ЭЛЕКТРОПИТАНИЯ | 2011 |
|
RU2483410C2 |
ИМИТАТОР ПИТАЮЩЕЙ ЭЛЕКТРИЧЕСКОЙ СЕТИ (ИПЭС) | 2016 |
|
RU2624610C1 |
ТРАНСФОРМАТОР ПОСТОЯННОГО НАПРЯЖЕНИЯ | 2004 |
|
RU2267218C1 |
Комплектное устройство распределения и преобразования электроэнергии | 2018 |
|
RU2707084C1 |
АБОНЕНТСКАЯ СТАНЦИЯ ДЛЯ ШИННОЙ СИСТЕМЫ И СПОСОБ УМЕНЬШЕНИЯ КОНДУКТИВНОЙ ПОМЕХОЭМИССИИ В ШИННОЙ СИСТЕМЕ | 2014 |
|
RU2700170C2 |
Система централизованного освещения производственных помещений и сооружений с большой световой нагрузкой | 2019 |
|
RU2729476C1 |
Использование: в области электротехники и электроэнергетики. Технический результат - повышение надежности локализации местоположения источника повышенной эмиссии кондуктивных помех и расширение области применения. Способ локализации источников повышенной эмиссии кондуктивных помех в шкафу комплектного устройства заключается в том, что измеряют напряжение помехоэмиссии в цепи электропитания шкафа комплектного устройства и определяют области частот, где измеренное напряжение помехоэмиссии превышает установленные пределы. При этом измеряют токи помехоэмиссии в цепях электропитания функциональных блоков шкафа комплектного устройства, сопоставляют измеренные токи помехоэмиссии по уровню в областях частот, где напряжение помехоэмиссии в цепи электропитания шкафа комплектного устройства превышает установленные пределы, и локализуют функциональные блоки шкафа комплектного устройства с наиболее высокими уровнями тока помехоэмиссии в упомянутых областях частот как источники превышения напряжения помехоэмиссии шкафа комплектного устройства установленных пределов. 2 н.п. ф-лы, 4 ил.
1. Способ локализации источников повышенной эмиссии кондуктивных помех в шкафу комплектного устройства, заключающийся в том, что измеряют напряжение помехоэмиссии в цепи электропитания шкафа комплектного устройства и определяют области частот, где измеренное напряжение помехоэмиссии превышает установленные пределы, отличающийся тем, что измеряют токи помехоэмиссии в цепях электропитания функциональных блоков шкафа комплектного устройства, сопоставляют измеренные токи помехоэмиссии по уровню в областях частот, где напряжение помехоэмиссии в цепи электропитания шкафа комплектного устройства превышает установленные пределы, и локализуют функциональные блоки шкафа комплектного устройства с наиболее высокими уровнями тока помехоэмиссии в упомянутых областях частот как источники превышения напряжения помехоэмиссии шкафа комплектного устройства установленных пределов.
2. Устройство для осуществления способа, содержащее шкаф комплектного устройства с функциональными блоками, измерительный приемник, эквивалент сети, вход которого соединен с сетью электропитания, а его первый выход соединен с портом электропитания шкафа комплектного устройства, отличающееся тем, что введен многоканальный коммутатор, а в шкаф комплектного устройства введены токовые пробники, число которых равно числу функциональных блоков комплектного устройства, соединенных соответствующими кабелями электропитания с портом электропитания шкафа комплектного устройства, при этом каждый кабель электропитания указанных функциональных блоков комплектного устройства охвачен соответствующим токовым пробником, входы введенного многоканального коммутатора соединены с выходами токовых пробников и вторым выходом эквивалента сети, а выход введенного многоканального коммутатора соединен с входом измерительного приемника.
УСТРОЙСТВО ЦЕНТРАЛИЗОВАННОЙ ДУГОВОЙ ЗАЩИТЫ КОМПЛЕКТНЫХ РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ | 2000 |
|
RU2187871C2 |
УСТРОЙСТВО ТРЕХМЕРНОГО СКАНИРОВАНИЯ ЭЛЕКТРОМАГНИТНЫХ ИЗЛУЧЕНИЙ В БЛИЖНЕМ ПОЛЕ ЭЛЕКТРОННЫХ СРЕДСТВ | 2012 |
|
RU2529673C2 |
CN 103823124 A, 28.05.2014. |
Авторы
Даты
2019-09-06—Публикация
2019-01-31—Подача