ЗАРЯД ДЛЯ РАЗРЕЗАНИЯ ТВЕРДЫХ МАТЕРИАЛОВ (ВАРИАНТЫ) Российский патент 2019 года по МПК B21D26/08 B26F3/00 F42B1/00 F42B3/08 

Описание патента на изобретение RU2701600C2

Заявляемое изобретение относится к взрывотехнике, а именно к резанию металлов и других твердых материалов взрывом, и может быть использовано для разделки и утилизации металлоконструкций как на поверхности земли, так и под водой или в условиях горных работ, в том числе и в чрезвычайных ситуациях.

Известен генератор взрывной волны по патенту РФ №2105946 МПК 6 F42B 1/00, опубл. 27.02.1998, включающий ленточный заряд и источник инициирования, соединенный детонационными каналами, примыкающими к заряду взрывчатого вещества, концевые участки которых расположены по длине заряда с двух его сторон напротив друг друга. Источник инициирования выполнен с возможностью одновременного задействования детонационных каналов по всей длине заряда.

Эффективность резки достигается в результате одновременного инициирования заряда взрывчатого вещества (ВВ) с двух сторон с помощью детонационных каналов и создания встречно-направленных детонационных волн в заряде обеспечивающих одновременное образование и последующее столкновение в разрезаемой преграде косых ударных волн сжатия, что приводит к локальному повышению давления в области реза по всей его длине. При углах столкновения косых ударных волн θ меньших 29θкр, где θкр - критический угол отражения (θкр≈34…39°), в материале реализуется регулярный режим интерференции с образованием двух отраженных волн и повышением давления до 2,0…2,4 раз по сравнению с давлением на фронте сходящихся волн. При 0 больших 2θкр в среде реализуется нерегулярный режим, что означает образование двух отраженных волн и головной волны Маха, на фронте которой давление может повышаться в 4…6 раз. (Альтшуллер Л.В., Баханова А.А. и др. «Нерегулярные режимы столкновения ударных волн в твердых телах» Журнал «Экспериментальная и теоретическая физика» том 41 выпуск 11, 1961 г. С. 1382). При взаимодействии, распространяющихся за ударными волнами сжатия, волн разгрузки в плоскости реза возникает область высоких отрицательных давлений, в которой и происходит разрушение твердого материала. В сплавах на основе железа при давлениях более 13 ГПа в процессе разгрузки образуются ударные волны разрежения, что интенсифицирует процесс разрушения металла.

Основным недостатком данного аналога является высокая удельная масса потребного ВВ для организации реза материала, а также высокая сложность монтажа соединений детонационных каналов с ленточным зарядом ВВ для инициирования, особенно при относительно больших длинах реза например для образования фрагментов до 1500X500 мм в плане.

В качестве ближайшего аналога выбран вариант удлиненного заряда по патенту РФ №2119398 МПК B21D 26/08, опубл. 27.09.98, выполненный в виде монолитного желоба полость которого заполнена инертным материалом, а на поверхности заряда противоположной поверхности полости нанесен слой высокобризантного ВВ со скоростью детонации, превышающей скорость детонации ВВ основного заряда и скорость звука в разрушаемом материале.

Положительный результат достигается следующим образом. При контактном взрыве на поверхности разрезаемого материала в стенках желобовидного заряда движутся две скользящие детонационные волны, синхронизированные за счет конструкции заряда. Воздействие детонационных импульсов приводит к образованию в преграде двух одинаковых косых ударных волн, края которых, согласно принципу Гюйгенса, инициируют в преградах вторичные симметрично сходящиеся ударные волны с конусоподобным фронтом (Н.П. Михайлов. Взаимодействие ударных волн зарядов различной формы. Сборник «Разработка рудных месторождений» Выпуск 49 Из-во «Техника», Киев, 1990 г. стр. 56). В полубесконечном массиве материала преграде угол столкновения конических фронтов быстро возрастает, и при θ>2θкр. столкновение ударных волн происходит в «Маховском» режиме, который обеспечивает взаимодействие в плоскости реза трех сходящих волн разрежения. Фокусировка волн разрежения приводит к образованию узкой зоны с высоким отрицательным давлением, благодаря которому происходит разрезание преграды по линии наименьшего сопротивления.

Основным недостатком данного заряда является недостаточная глубина реза из-за быстрого увеличения угла столкновения волн с глубиной а также из-за того что разрушение происходит в результате столкновения вторичных ударных волн с давлением меньшим чем в первичных косых волнах, что приводит к повышенной удельной энергоемкости взрывного разрезания.

Перед заявляемым изобретением поставлена задача - увеличить глубину реза при неувеличении или уменьшении показателя удельной энергоемкости заряда для разрезания твердых материалов.

Поставленная задача решается тем, что, заряд для разрезания твердых материалов выполнен в виде монолитного желоба ВВ, полость которого

заполнена инертным материалом, а на поверхности заряда противоположной полости нанесен непрерывный слой высокобризантного ВВ имеющего скорость детонации, превышающую скорость детонации ВВ заряда, при этом поверхность основного заряда противоположная полости желоба выполнена в форме двугранного угла вогнутого со стороны торцов желоба, а его грани образуют с поверхностью разрезаемой преграды угол а удовлетворяющий неравенству , где 1 - ширина полости заряда, а δ- толщина разрезаемой преграды.

Также поставленная задача может решаться тем, что заряд для разрезания твердых материалов выполнен в виде монолитного желоба ВВ, полость которого заполнена инертным материалом, а на поверхности заряда противоположной полости нанесен непрерывный слой высокобризантного ВВ имеющего скорость детонации, превышающую скорость детонации ВВ заряд, при этом поверхность основного заряда противоположная полости желоба выполнена в форме сегмента овала, хорда которого совмещена с плоскостью торцов стенок желоба, а отношение длины хорды сегмента овала к его высоте принадлежит интервалу (2,0;4,5).

На внутреннюю поверхность желоба заряда с U образным профилем внутренней полости может быть нанесена облицовка из высокоплотного материала в которой отношение поверхностной плотности к поверхностной плотности ВВ контактирующего с облицовкой возрастает от краев к дну 11-образной полости.

Таким образом, достигается технический результат, а именно повышается глубина реза в материале при уменьшении показателя удельной энергоемкости заряда для разрезания твердых материалов q=m/δ, где m - линейная масса заряда, а δ - толщина разрезаемой преграды.

На Фиг. 1 изображено поперечное сечения варианта заряда для разрезания твердых материалов с основным зарядом в виде усеченного двугранного угла и внешним слоем высокобризантного ВВ и с облицовкой U образной внутренней полости.

На Фиг. 2 изображено поперечное сечения варианта заряда для разрезания твердых материалов с основным зарядом в виде полуовала и с внешним слоем высокобризантного ВВ.

Заряд для разрезания твердых материалов по первому варианту исполнения содержит заряд 1, поперечное сечение которого представлено на рисунке (см. Фиг. 1), слой высокобризантного ВВ 2 и полость 3 в заряде 1, заполненная инертным низкоплотным материалом, причем этот материал может быть магнитным для лучшего прилегания заряда к разрушаемой преграде 4, и быть, например, пористой магнитной резиной. При этом поверхность основного заряда 1 противоположная полости 3 с нанесенным на ней слоем высокобризантного ВВ 2 образует срезанный двугранный угол, боковые грани которого наклонены к поверхности разрезаемого материала на угол а подчиняющийся следующему неравенству , где 1 - ширина полости заряда, а δ - толщина слоя разрезаемого материала. Над полостью 3 этот двугранный угол срезан для экономии массы ВВ основного заряда 1, так как данная часть ВВ не участвует в создании в разрушаемой преграде необходимой конфигурации ударных волн.

Предложенный заряд для разрезания твердых материалов по первому варианту работает следующим образом: точечная инициация детонации слоя высокобризантного ВВ обеспечивает образование в заряде 1, детонационных фронтов 5, профиль которых в фиксированном сечении коллинеарен слою высокобризантного ВВ 2 а затем их падению на поверхность материала 4 под острым углом а. Это приводит к возбуждению в материале 4 двух сходящиеся к продольной оси заряда косых ударных волн 6, которые взаимодействуют друг с другом в плоскости реза 7. Такое столкновение первичных ударных волн и производит разрушение матерала 4 в плоскости реза 7, на большую глубину по сравнению с работой вторичных конических волн разгрузки в ближайшем аналоге.

Примером практического применения заряда для разрезания твердых материалов по первому варианту исполнения (см. фиг. 3) является заряд который использовался для разрезания стальной плиты (материал Ст. 3) толщиной 50 мм и размером в плане 1000X1000 мм. Заряд был изготовлен из пластичного ВВ с плотностью и скоростью детонации . На поверхность заряда наклеивалась лента высокобризантного ВВ 2 с плотностью и скоростью детонации и толщиной 2,5 мм. Вес всего заряда составлял 0,7 кг/пог. метр. Заряд располагался на средней линии плиты и инициировался на одном из концов электро детонатором. В результате по сравнению с ближайшим аналогом масса ВВ уменьшена на 30%.

В случае применения указанного заряда для разрезания твердых

материалов обладающих значительной вязкостью и откольной прочностью, например, в марганцевистых сталях аустенитного класса, может наблюдаться неполное разрезание разрушаемой преграды 4 прямо под полостью 3, что можно объяснить влиянием волны разрежения образующейся на контакте разрезаемого материала 4 - низкоплотная среды полости 3, которая понижает давление в сходящихся волнах. Кроме того начало столкновения первичных косых волн происходит на некотором расстоянии от заряда 1, что также снижает эффективность разрушения под полостью 3. В этом случае целесообразно нанести на поверхность полости желоба 3 облицовку II образного профиля 8 из высокоплотного материала в которой отношение поверхностной массы к поверхностной массе ВВ, контактирующего с облицовкой 8 возрастает от краев к вершине U образного профиля облицовки 8.

При обжатии взрывом облицовки 8 образуется кумулятивная струя - «нож» в которой скорость материала убывает в направлении от головной части к линии соударения облицовки, что увеличивает ширину «ножа», и в результате увеличивается глубина кумулятивного реза части металла не разрушенной ударными волнами 6.

Предложенный заряд для разрезания твердых материалов по второму варианту исполнения содержит заряд 1, поперечное сечение которого представлено на рисунке (см фиг 2), слой высокобризантного ВВ 2 и полость 3 в заряде 1 заполненную инертным низкоплотным материалом, причем этот материал может быть магнитным для лучшего прилегания заряда 1 к разрушаемому материалу 4, и быть, например, магнитной резиной. При этом поверхность заряда 1 противоположная полости 3 с нанесенным на ней слоем высокобризантного ВВ 2 образует сегмент овала, хорда которого совмещена с плоскостью торцов стенок желоба, а отношение длины хорды сегмента овала к его высоте принадлежит интервалу (2,0;4,5).

Предложенный заряд для разрезания твердых материалов по второму варианту работает следующим образом: после точечной инициации детонация слоя высокобризантного ВВ 2 приводит к образованию в стенках желобовидного заряда 1 происходит образование двух конусообразных детонационных фронтов 9 симметрично сходящихся к оси заряда 1 с увеличением фронтального давления вследствие эффекта имплозии детонационных волн и возбуждению на поверхности материала 4 двух встречно направленных косых ударных волн 6 которые взаимодействуют друг с другом в плоскости реза 7. Такое столкновение первичных косых ударных волн 6 и производит разрушение материала 4 в плоскости реза 7, на большую глубину по сравнению с работой вторичных волн в ближайшем аналоге.

Таким образом, достигается технический результат, а именно повышается глубина реза в разрезаемом твердом материале при уменьшении показателя удельной энергоемкости заряда для разрезания твердых материалов.

Похожие патенты RU2701600C2

название год авторы номер документа
СПОСОБ ВЗРЫВНОГО РАЗРЕЗАНИЯ ТВЕРДЫХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Михайлов Н.П.
RU2119398C1
Кумулятивный заряд 2017
  • Грек Максим Олегович
  • Грек Владимир Олегович
  • Кузин Евгений Николаевич
RU2681019C1
Удлиненный кумулятивный заряд 2018
  • Кузин Евгений Николаевич
  • Загарских Владимир Ильич
  • Макаров Геннадий Иванович
  • Гашеев Денис Вадимович
RU2693065C1
УДЛИНЕННЫЙ КУМУЛЯТИВНЫЙ ЗАРЯД 2006
  • Загарских Владимир Ильич
  • Кузин Евгений Николаевич
  • Балакин Александр Анатольевич
  • Дахно Елена Александровна
RU2304271C1
Удлиненный кумулятивный заряд и способ его изготовления 2019
  • Кузин Евгений Николаевич
  • Загарских Владимир Ильич
  • Макаров Геннадий Иванович
  • Гашеев Денис Вадимович
RU2706155C1
УДЛИНЕННЫЙ КУМУЛЯТИВНЫЙ ЗАРЯД 2004
  • Кузин Евгений Николаевич
  • Загарских Владимир Ильич
  • Балакин Александр Анатольевич
RU2276318C1
СПОСОБ ФОРМИРОВАНИЯ КУМУЛЯТИВНОЙ СТРУИ И КУМУЛЯТИВНЫЙ ЗАРЯД ПЕРФОРАТОРА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Нескин Алексей Георгиевич
  • Антипинский Сергей Петрович
  • Зеленов Александр Николаевич
  • Соколов Михаил Львович
  • Пантюхин Борис Сергеевич
RU2495360C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ЧУВСТВИТЕЛЬНОСТИ К УДАРНОЙ ВОЛНЕ ЗАРЯДА ВВ 2008
  • Андреевских Леонид Александрович
  • Вахмистров Сергей Анатольевич
  • Воскобойник Алексей Филиппович
  • Фомичева Людмила Валентиновна
  • Шевлягин Олег Владимирович
RU2376599C2
Генератор ударных волн взрывного типа 2019
  • Боталов Дмитрий Яковлевич
  • Валько Виктор Васильевич
  • Мартынов Альберт Геннадиевич
  • Потапов Николай Александрович
  • Чепрунов Александр Александрович
RU2730909C1
СПОСОБ ВЗРЫВНОЙ РЕЗКИ МЕТАЛЛИЧЕСКИХ КОНСТРУКЦИЙ 2016
  • Занегин Игорь Владимирович
  • Зотов Дмитрий Евгеньевич
  • Шиберин Игорь Владимирович
RU2618676C1

Иллюстрации к изобретению RU 2 701 600 C2

Реферат патента 2019 года ЗАРЯД ДЛЯ РАЗРЕЗАНИЯ ТВЕРДЫХ МАТЕРИАЛОВ (ВАРИАНТЫ)

Изобретение относится к взрывотехнике, а именно к резанию металлов и других твердых материалов взрывом, и может быть использовано для разделки и утилизации металлоконструкций как на поверхности земли, так и под водой или в условиях горных работ, в том числе и в чрезвычайных ситуациях. Заряд для разрезания твердых материалов согласно одному из вариантов реализации выполнен в виде монолитного желоба взрывчатого вещества (ВВ), полость которого заполнена инертным материалом, а на поверхности заряда противоположной полости нанесен непрерывный слой высокобризантного ВВ, имеющего скорость детонации, превышающую скорость детонации ВВ заряда. Желоб со стороны, противоположной полости желоба, выполнен со стенками в форме двугранного угла, вогнутого со стороны торцов желоба, грани которого образуют с плоскостью, параллельной разрезаемому твердому материалу, угол α, удовлетворяющий неравенству , где - ширина полости заряда, а δ - толщина разрезаемого твердого материала. В результате обеспечивается повышение глубины реза в разрезаемом твердом материале при уменьшении показателя удельной энергоемкости заряда для разрезания твердых материалов. 2 н. и 2 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 701 600 C2

1. Заряд для разрезания твердых материалов, выполненный в виде монолитного желоба взрывчатого вещества (ВВ), полость которого заполнена инертным материалом и на поверхность стенок которого со стороны, противоположной полости желоба, нанесен непрерывный слой высокобризантного ВВ, имеющего скорость детонации, превышающую скорость детонации ВВ заряда, отличающийся тем, что желоб со стороны, противоположной полости желоба, выполнен со стенками в форме двугранного угла, вогнутого со стороны торцов желоба, грани которого образуют с плоскостью, параллельной разрезанному твердому материалу, угол α, удовлетворяющий следующему неравенству , где l - ширина полости заряда, а δ - толщина разрезаемого твердого материала.

2. Заряд по п. 1, отличающийся тем, что полость желоба выполнена с U-образным профилем, на внутреннюю поверхность которой нанесена облицовка высокоплотного материала, в которой отношение поверхностной плотности в поверхностной плотности ВВ, контактирующего с облицовкой, возрастает от краев ко дну U-образной полости.

3. Заряд для разрезания твердых материалов, выполненный в виде монолитного желоба взрывчатого вещества (ВВ), полость которого заполнена инертным материалом и на поверхность стенок которого со стороны, противоположной полости желоба, нанесен непрерывный слой высокобризантного ВВ, имеющего скорость детонации, превышающую скорость детонации ВВ заряда, отличающийся тем, что желоб со стороны, противоположной полости желоба, выполнен со стенками в форме сегмента овала, хорда которого совмещена с плоскостью торцов стенок желоба, а отношение длины хорды сегмента овала к его высоте составляет от 2,0 до 4,5.

4. Заряд по п. 3, отличающийся тем, что полость желоба выполнена с U-образным профилем, на внутреннюю поверхность которой нанесена облицовка из высокоплотного материала, в которой отношение поверхностной плотности к поверхностной плотности ВВ, контактирующего с облицовкой, возрастает от краев ко дну U-образной полости.

Документы, цитированные в отчете о поиске Патент 2019 года RU2701600C2

СПОСОБ ВЗРЫВНОГО РАЗРЕЗАНИЯ ТВЕРДЫХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Михайлов Н.П.
RU2119398C1
ЗАРЯД ВЗРЫВЧАТОГО ВЕЩЕСТВА ДЛЯ РАЗРЕЗАНИЯ 1992
  • Стриженок М.А.
RU2086896C1
УСТРОЙСТВО ВЗРЫВНОЕ РЕЖУЩЕЕ 1998
  • Новиков С.А.
  • Батьков Ю.В.
  • Скоков В.И.
  • Лобанов В.Н.
  • Кислинский В.П.
  • Андреевских Л.А.
  • Ковалев Н.П.
RU2155262C2
Способ нанесения толстых металлических покрытий 1946
  • Корнишин К.И.
SU70681A2
УСТРОЙСТВО ДЛЯ РАЗДЕЛЕНИЯ ЭЛЕМЕНТОВ КОНСТРУКЦИИ 2005
  • Асриев Юрий Иванович
RU2304073C2
Способ получения вазелина для медицинских целей 1934
  • Негримовский С.М.
SU42650A1
US 4649824 A1, 17.03.1987.

RU 2 701 600 C2

Авторы

Михайлов Николай Павлович

Знаменский Евгений Александрович

Дорошенко Станислав Иванович

Кравцов Всеволод Олегович

Кэрт Борис Эвольдович

Даты

2019-09-30Публикация

2017-07-03Подача