СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРИЧЕСТВА ПРИ ОБТЕКАНИИ НАГРЕТОГО ТЕЛА ЗА СЧЕТ ПИРОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ТЕПЛА В ВИХРЕВОМ СЛЕДЕ Российский патент 2019 года по МПК H02N2/00 

Описание патента на изобретение RU2702982C1

Изобретение относится к теплотехнике и может быть использовано в области энергетики, в том числе альтернативной, микроэлектроники и экологии, при использовании и преобразовании низкопотенциального тепла напрямую в электричество. Изобретение может быть использовано в научно-исследовательских работах по экспериментальному исследованию гидродинамических неизотермических течений, используя пироэлектрическое преобразование тепла и пироэлектрический эффект различных материалов.

Рассеянная в окружающей среде тепловая энергия в настоящее время является предметом повышенного интереса в результате растущих энергетических потребностей, и, как средство для создания автономных систем с автономным питанием.

Тепло от окружающей среды остается почти повсеместным и обильным источником энергии, которая часто теряется, как низкопотенциальное тепло (~25-200°C). Отработанное тепло относится к энергии, выделяемой в качестве побочного продукта; охлаждения, или циклов теплового насоса. Его часто выпускают в атмосферу, реки, океаны или в виде горячих газов, горячей воды.

К сожалению, меньше всего решений существует для преобразования среднего и низкого класса тепловых отходов в пригодные для использования формы энергии. Если отработанное тепло может быть эффективно переработано в полезные формы энергии, оно может выступать в качестве потенциального источника для удовлетворения растущего спроса на энергию. Менее широко исследуемая территория - пироэлектрический сбор энергии, в котором колебания температуры преобразуются в электрическую энергию, хотя, возможность для преобразования тепловой энергии в электрическую энергию с использованием сегнетоэлектрических материалов была рассмотрена достаточно давно.

Создание устройств пироэлектрического преобразования тепла тормозится малой их эффективностью, и соответственно КПД. Известен способ преобразования тепловой энергии в электрическую с помощью пироэлектрических преобразователей, при котором пироэлектрический элемент попеременно соприкасается с нагретым и холодным телом [Ravindran S.K.T., Kroener M., Woias P. A standalone pyroelectric harvester for thermal energy harvesting. PowerMEMS 2012, Atlanta, GA, USA, December 2-5, 2012]. В экспериментах при разности температур тел 85 К было получена мощность 15,7 мкВт.

Однако с ростом минимизации и при интеллектуальном управлении микроэлектроникой пироэлектрический эффект возможно использовать для микродатчиков и источников длительного питания.

В системах вентиляции, охлаждения при обтекании различных нагретых элементов воздушными потоками возникают вихревые структуры, которые создают пульсации температуры в определенных местах в своем следе. Эти пульсации температуры возможно использовать в качестве источника пироэлектрического эффекта для получения электричества малой мощности.

Известно устройство (патент ЕР 2953259, H02N 2/18, 2015 г.), которое в основном состоит из пьезоэлектрического элемента, соответствующим образом прикрепленного к аэродинамическому придатку, имеющему особый размер по форме и механическим характеристикам для использования специфического эффекта потока воздуха (в частности, один из эффектов, которые в техническом отношении называются «разрывы вихрей», «флаттер», или «вибрации, вызванные турбулентным потоком») для производства электрической энергии.

Известно решение (Weinstein L.A., Cacan M.R., So P.M., Wright P.K. Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows // Smart Mater. Struct. 2012. V. 21. 045003) и решение (Alhadidi A.H., Daqaq M.F.A broadband bi-stable flow energy harvester based on the wake-galloping phenomenon // Appl. Phys. Lett. 2016. V. 109. 033904), где показана возможность получения пьезоэлектричества малой мощности в узком диапазоне скоростей при специальных конструкциях. В первом решении приводится способ преобразования энергии с помощью пьезоэлектрика. Способ заключается в том, что за обтекаемым воздушным потоком цилиндрическим препятствием возникают вихревые структуры типа дорожки Кармана, которые приводят к возникновению колебаний давления в следе. На расстоянии 2-5 калибров (диаметров), где возникают максимальные колебания, располагают пластину, воспринимающую эти колебания. На этой пластине, в месте максимальной деформации крепится пьезопреобразователь, который преобразует деформацию пластины в электричество. Устройство работает в области 16-40 Гц с максимумом порядка 20 Гц. Во втором решении способ формирования вихрей имеет ту же самую физическую природу. Но для усиления колебаний воспринимающей пластины используются магниты, сохраняющие неустойчивое состояние пластины с прикрепленным пьезопреобразователем.

Наиболее близким по существенным признакам является устройство (патент CN 107707153, H02N 2/18, 2018 г.). Изобретение раскрывает пьезоэлектрическое устройство генерирования электроэнергии на основе турбулентного потока, который обтекает цилиндрическое тело.

В приведенном выше устройстве получения электричества на основе пьезопреобразования с использованием колебаний давления в следе обтекаемого цилиндрического тела основным недостатком является относительная сложность создания определенных условий для формирования потоков, двухступенчатое преобразование энергии от потока к механической и далее к электрической энергии. Для достижения максимальной эффективности используют устройства усиления механической деформации пьезоэлемента, что приводит к существенному усложнению конструкции преобразователя. В частности используют магнитный узел для усиления бистабильного состояния пьезопреобразователя.

Основной недостаток известных решений заключается в узкой полосе частот сбора энергии с дополнительными элементами усиления деформаций для преобразования колебаний давления в вихревом следе в механическую энергию, низкой эффективности электромеханических преобразований пьзоэлектрических устройств.

Задачей изобретения является создание нового эффективного способа преобразования низкопотенциального тепла напрямую в электричество.

Поставленная задача решается тем, что в способе получения электричества при обтекании нагретого тела за счет пироэлектрического преобразования тепла в вихревом следе, при котором при обтекании нагретого тела потоками газа или жидкости за ним образуется вихревой след, в который помещают электрогенератор для получения электрической энергии, согласно изобретению, в вихревой след помещают пироэлектрический генератор для прямого преобразования тепловых пульсаций в электрическую энергию, в качестве обтекаемых нагретых тел используют препятствия различной конфигурации, а поверхность обтекаемого тела нагревается за счет проходящего в нем технологического потока жидкости или газа.

Поверхность обтекания нагревается, и в следе возникают колебания температуры, которые напрямую преобразуются в электричество посредством пироэлектрического эффекта в пиро-(пьезо)материалах. Пироэлектрический преобразователь (пирогенератор) в следе обтекаемого тела устанавливается неподвижно, поэтому механические колебания отсутствуют, и не требуется согласования механических частот пластины преобразователя и частоты воздействия вихрей. В предлагаемом изобретении пирогенератор работает во всем диапазоне возникновения вихревых структур (колебаний температур).

На фиг. 1 представлен вид устройства для осуществления способа получения электричества при обтекании нагретого тела за счет пироэлектрического преобразования тепла в вихревом следе, где:

1 - нагретое тело;

2 - пироэлектрический генератор;

3 - крепление пироэлектрического генератора.

На фиг. 2 показана эквивалентная схема пироэлектрического генератора и измерение напряжения на типовой нагрузке RL.

На фиг. 3 приведена таблица данных эксперимента (через запятую для 5 и 3 пироэлектрических элементов соответственно).

Способ осуществляется следующим образом.

При обтекании нагретого тела 1 потоками газа или жидкости за ними образуются вихревые структуры типа дорожки Кармана. Вихревые структуры (вихри) имеют отличную от внешнего потока температуру. Такие нагретые вихри создают пульсации тепла (температуры) в определенных местах за телом обтекания. Первая вихревая структура формируется за телом на расстоянии примерно 1-1,5 диаметра и здесь будет максимальная с внешним потоком разность температур. В этом месте устанавливается пирогенератор 2, который преобразует тепловую энергию в электрическую. Пирогенератор 2 состоит из нескольких пироэлементов. Количество пироэлементов зависит от их размеров, взаимного расположения и размера обтекаемого тела. При использовании нагретых цилиндрических тел (труб), за ними образуется след, состоящий из двух вихревых дорожек, в которые помещаются 2 пиролектрических генератора.

Промышленная применимость.

Были проведены экспериментальные исследования в аэродинамическом канале. Аэродинамический канал содержит осевой вентилятор, который подает воздух в канал, камеру формирования профиля скорости с хонейкомбом и конфузором, рабочий участок, диффузор и вытяжную систему. Рабочий участок установки, изготовленный из оргстекла, имеет форму прямоугольного параллелепипеда с квадратным поперечным внутренним сечением 0,125×0,125 м2 и длиной 1 м. Управляющий блок позволяет плавно менять вращение вентилятора, обеспечивая поддержание средней скорости ядра потока в рабочем участке в диапазоне 0,5-30 м/с.

В рабочий участок помещалась горизонтально дюралевая трубка с внешним диаметром 31 мм и толщиной стенок 2 мм. Цилиндр обтекался потоком воздуха комнатной температуры при различной скорости. За цилиндром при его обтекании возникают вихревые структуры типа дорожки Кармана, которые асимметрично квазипериодически сходят с верхней и нижней части. Частота схода этих вихрей (без нагрева) определяется из числа Струхаля, величина которого составляет Sh≈0,2 для широкого интервала чисел Рейнольдса Re≈2⋅102-2⋅105. В этом же диапазоне чисел Рейнольдса коэффициент сопротивления цилиндра не меняется и составляет порядка 1. Из скорости потока v, диаметра цилиндра D можно определить частоту схода вихрей с поверхности цилиндра: fSh=(Sh×v)/D=0,18v/D.

Для получения пульсаций температуры в вихревом следе за цилиндром внутрь трубки помещался омический нагреватель, мощность которого можно было менять с помощью ЛАТР. Температура на поверхности тела измерялась термопарой с подветренной стороны потока. Электрическая мощность нагревателя в трубке была постоянной и равна 330 Вт.

В качестве пироэлектрического генератора использовалась кассета из пяти пироэлементов (фиг. 1), каждый из которых представляет собой пластинку, состоящую из бронзовой подложки диаметром 27 мм и толщиной 200 мкм с нанесенной на нее пьезокерамикой ЦТС (цирконат-титанат свинца) диаметром 20 мм и толщиной 220 мкм. Пироэлементы находились на расстоянии 2 мм друг от друга, и были соединены параллельно, имея каждый емкость Ср≈22 нФ, сопротивление Rp≈1 ГОм. Кассета с пироэлектриками устанавливалась на расстоянии 1-1,5D от цилиндра вниз по течению. Дополнительно были проведены измерения с кассетой из 3 пироэлектриков, расстояния между которыми были порядка 5 мм.

Были измерены температуры за цилиндром в следе и в свободном потоке в одном и том же сечении. Разница температур составила 25-35°С в зависимости от диапазона параметров, указанных в таблице (фиг. 3).

Измерения напряжения на нагрузке URL проводились цифровым осциллографом ADS-2061MV с входным сопротивлением RL=1 МОм (фиг. 2). Было получено переменное напряжение со средней амплитудой Ua.

В таблице (фиг. 3) приведены данные эксперимента, через запятую для 5 и 3 пироэлементов соответственно.

Показана возможность получения пироэлектричества в вихревом следе обтекаемого нагретого тела без учета оптимальных режимов и конструкции устройства пирогенератора.

Преимущества предложенного способа:

- прямое преобразование тепловых (температурных) пульсаций в электричество;

- использование коммерческой достаточно дешевой керамики в качестве материала пироэлемента;

- простота конструкции;

- возможность использования пироэлементов в широком диапазоне частот, возможность использования большого количества их одновременно.

Способ позволяет получать электрическую энергию малой мощности из тепловых пульсаций при обтекании нагретых тел различной конфигурации, которые используются в вентиляционной и аэродинамической системах, в системах микроэлектроники для питания различных маломощных датчиков и накопления энергии в аккумуляторах.

Похожие патенты RU2702982C1

название год авторы номер документа
ВИХРЕВОЙ РАСХОДОМЕР 1973
  • Авторы Изобретени
SU396555A1
ПАРОГАЗОВАЯ ТЕПЛОНАСОСНАЯ СИЛОВАЯ УСТАНОВКА 1998
  • Чуркин Р.К.
  • Чуркин Д.Р.
RU2135784C1
ВИХРЕВОЙ ДАТЧИК СКОРОСТИ 1995
  • Мартынов Е.В.
  • Краснов Ю.Н.
  • Колчин А.В.
  • Алексеев В.П.
  • Репин И.Н.
RU2084900C1
ВЫСОКОТЕМПЕРАТУРНЫЙ ДАТЧИК ДЛЯ ВИХРЕВЫХ РАСХОДОМЕРОВ 2021
  • Петров Владимир Владимирович
  • Петров Арсений Владимирович
RU2771011C1
СПОСОБ СМЕРЧЕВОГО ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ СПЛОШНОЙ СРЕДЫ, СМЕРЧЕВОЙ ПРЕОБРАЗОВАТЕЛЬ ЭНЕРГИИ (ВАРИАНТЫ), ПРЕОБРАЗОВАТЕЛЬ СОЛНЕЧНОЙ ЭНЕРГИИ, СПОСОБ МАГНИТОТЕПЛОВОГО ПРЕОБРАЗОВАНИЯ ЭНЕРГИИ, СМЕРЧЕВОЙ ПРЕОБРАЗОВАТЕЛЬ МАГНИТОТЕПЛОВОЙ ЭНЕРГИИ, СМЕРЧЕВОЙ НАГНЕТАТЕЛЬ И СМЕРЧЕВАЯ ТУРБИНА 2008
  • Кикнадзе Геннадий Ираклиевич
  • Гачечиладзе Иван Александрович
  • Олейников Валерий Григорьевич
RU2386857C1
Измеритель скорости потока жидкости или газа 1976
  • Романенко Евгений Васильевич
SU607145A1
Датчик меточного расходомера 1979
  • Новожилов Борис Михайлович
SU802793A1
ПОВЕРХНОСТЬ ТЕЛА ДЛЯ УМЕНЬШЕНИЯ ТРЕНИЯ И ПОВЕРХНОСТЬ ТЕЛА ДЛЯ ИНТЕНСИФИКАЦИИ ТЕПЛООБМЕНА 2006
  • Кикнадзе Геннадий Ираклиевич
  • Гачечиладзе Иван Александрович
RU2425260C2
ВИХРЕВОЙ РАСХОДОМЕР 1995
  • Мартынов Е.В.
  • Краснов Ю.Н.
  • Колчин А.В.
  • Алексеев В.П.
  • Репин И.Н.
RU2097706C1
СТРУЙНЫЙ ПОДОГРЕВАТЕЛЬ ВОДЫ 2006
  • Куркулов Михаил Анатольевич
  • Недугов Анатолий Федорович
RU2333399C1

Иллюстрации к изобретению RU 2 702 982 C1

Реферат патента 2019 года СПОСОБ ПОЛУЧЕНИЯ ЭЛЕКТРИЧЕСТВА ПРИ ОБТЕКАНИИ НАГРЕТОГО ТЕЛА ЗА СЧЕТ ПИРОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАНИЯ ТЕПЛА В ВИХРЕВОМ СЛЕДЕ

Изобретение относится к теплотехнике и может быть использовано в области энергетики, в том числе альтернативной, микроэлектроники и экологии, при использовании и преобразовании низкопотенциального тепла напрямую в электричество. Задачей изобретения является создание нового эффективного способа преобразования низкопотенциального тепла напрямую в электричество. Поставленная задача решается тем, что в способе получения электричества при обтекании нагретого тела за счет пироэлектрического преобразования тепла в вихревом следе, при котором при обтекании нагретого тела потоками газа или жидкости за ним образуется вихревой след, в который помещают электрогенератор для получения электрической энергии, согласно изобретению в вихревой след помещают пироэлектрический генератор для прямого преобразования тепловых пульсаций в электрическую энергию, в качестве обтекаемых нагретых тел используют препятствия различной конфигурации, а поверхность обтекаемого тела нагревается за счет проходящего в нем технологического потока жидкости или газа. 3 ил.

Формула изобретения RU 2 702 982 C1

Способ получения электричества при обтекании нагретого тела за счет пироэлектрического преобразования тепла в вихревом следе, при котором при обтекании нагретого тела потоками газа или жидкости за ним образуется вихревой след, в который помещают электрогенератор для получения электрической энергии, отличающийся тем, что в вихревой след помещают пироэлектрический генератор для прямого преобразования тепловых пульсаций в электрическую энергию, в качестве обтекаемых нагретых тел используют препятствия различной конфигурации, а поверхность обтекаемого тела нагревается за счет проходящего в нем технологического потока жидкости или газа.

Документы, цитированные в отчете о поиске Патент 2019 года RU2702982C1

Погрузочная машина 1957
  • Коровин П.А.
SU152417A1
Способ получения агар-агара из водорослей 1938
  • Смускович И.Е.
SU56068A1
US 9667121 B2, 30.05.2017
KR 101616569 B1, 29.04.2016.

RU 2 702 982 C1

Авторы

Добросельский Константин Геннадьевич

Лебедев Анатолий Сергеевич

Антипин Владимир Андреевич

Юдин Пётр Владимирович

Даты

2019-10-14Публикация

2018-12-10Подача