Изобретение относится к оптическим элементам, в частности, к компактным элементам фокусировки и сбора лазерного излучения.
Известен оптический сварной датчик (патент US 7,397,985 В2 публ. 08.07.2008), состоящий из оптического волокна, фокусирующей линзы, корпуса и наполнителя из стеклянного припоя. Особенностью его конструкции является то, что торец оптического волокна приваривается непосредственно к линзе, а место сочленения заполняется стеклянным припоем с высокой температурой плавления. Благодаря этому подобный датчик способен выдерживать оптические сигналы повышенной мощности.
Недостатком устройства является сложность и дороговизна конструкции а также относительно большие габариты.
В качестве ближайшего аналога заявляемому устройству может служить один из вариантов оптического волоконного датчика с большим рабочим расстоянием и низким уровнем вносимых потерь, представленных в материалах заявки на изобретение US 2002/0197020 (публ. 26.12.2002). Взятое за ближайший аналог устройство изображено на л.1 рисунков описания к заявке US 2002/0197020. Устройство включает: оптическое волокно, стеклянную зажимную муфту, фокусирующий и собирательный элемент (градиентную линзу), стеклянную трубку и металлическую трубку. Градиентная линза и оптоволокно в стеклянной зажимной муфте прецизионно монтируются в стеклянную трубку на фиксированном расстоянии друг от друга для обеспечения требуемых рабочих характеристик. Далее стеклянная трубка с содержимым заключается в защитную металлическую трубку. Участок оптоволокна на выходе из металлической трубки фиксируется с помощью эпоксидной смолы. Смежные поверхности градиентной линзы и стеклянной зажимной муфты выполняются скошенными под углом порядка 8° для уменьшения обратного отражения.
Недостатками ближайшего аналога являются высокая стоимость, относительно большие габаритные размеры и трудоемкость изготовления. Кроме того, к конструкции предъявляются требования по центровке торца оптического волокна относительно линзы. Большие габариты ограничивают количество размещаемых датчиков на единицу площади исследуемой поверхности, что уменьшает информативность исследований.
Техническим результатом заявляемого изобретения является повышение технологичности изготовления, уменьшение стоимости, уменьшение габаритов.
Указанный технический результат достигается за счет того, что в оптическом волоконном датчике, включающем фокусирующий и собирающий элемент, новым является то, что фокусирующий и собирающий элемент сформирован из оптического волокна датчика путем оплавления торца с приданием ему сфероподобной формы, диаметр которого превышает диаметр оптического волокна в 1,2-1,5 раз.
Формирование фокусирующего и собирающего элемента из оптического волокна датчика путем оплавления торца позволяет выполнить датчик в бескорпусном варианте, из конструкции исключив линзу, упростив изготовление и существенно уменьшив габариты. Благодаря малым габаритам заявляемого датчика можно использовать их большее количество на единицу площади исследуемой поверхности.
Обработка торца волокна, например, с помощью нагревательной установки до приобретения им сфероподобной формы, позволяет получить фокусирующий элемент в интегрированном варианте, что исключает жесткие требования по центровке и расположению торца относительно линзы. Также за счет того, что для изготовления малогабаритного волоконного датчика требуется только оптическое волокно и нагревательная установка, сам технологический процесс сравнительно прост и не занимает много времени.
Выбор диаметра сфероподобного торца превышающим диаметр оптического волокна в 1,2-1,5 раз, был выполнен расчетно-экспериментальным путем и связан с обеспечением оптимальных оптических характеристик датчика более простым методом.
На фиг. 1 изображена схема конкретного выполнения оптического волоконного датчика, где: 1 - оптоволоконный канал, 2 - интегрированная полусфера, сформированная с помощью нагревательной установки, 3 - лазерное излучение, 4 - исследуемая поверхность, 5 - фокусное расстояние.
Примером конкретного выполнения заявляемого устройства может служить млогабаритный волоконный датчик МВД, общий вид которого показан на фиг. 2. Датчик МВД изготовлен из одномодового оптического волокна Corning SMF-28, интегрированная полусфера сформирована с помощью волоконного сварочного электродугового аппарата с ручным управлением. Способ изготовления датчика включает следующие операции:
- Снятие защитного покрытия оптоволокна
- Очистка оголенного волокна изопропиловым спиртом
- Скалывание торца оптоволокна
- Расположение оптоволокна в нагревательной установке на расстоянии 6 мм от электрической дуги
- Установка времени нагрева на уровне 2 с.
- Выбор мощности электрической дуги на уровне 100 ед.
- Пятикратное повторение запуска электрической дуги без задержек по времени между итерациями
При штатном использовании сварочный аппарат находится в горизонтальном положении. При изготовлении МВД перед запуском электрической дуги корпус сварочного аппарата устанавливается в вертикальном положении для обеспечения осесимметричности формируемой полусферы. Результирующий диаметр интегрированной полусферы МВД составляет порядка 160 мкм и в 1.3 раза превышает начальный диаметр оптического волокна. Фокусное расстояние МВД составляет 10-15 мм.
Работа заявляемого устройства осуществляется следующим образом. Лазерное излучение 3 на выходе из оптоволоконного канала 1 фокусируется с помощью интегрированной полусферы 2 на фокусном расстоянии 5 и направляется на исследуемую поверхность 4. Отраженное лазерное излучение 3, содержащее информацию об исследуемой поверхности 4, с помощью интегрированной полусферы 2 собирается и направляется обратно в оптоволоконный канал 1, а затем передается на регистрирующую аппаратуру.
Заявляемое устройство представляет собой предельно простой и дешевый в изготовлении волоконный оптический датчик. Глобальным преимуществом МВД является его малый габарит и, как следствие, возможность зондирования малой площади исследуемой поверхности большим количеством датчиков. Обеспечена возможность в короткие сроки получить необходимое количество датчиков с минимальными трудозатратами и затратами на их изготовление. Использование МВД обеспечивает высокую экономическую эффективность проведения исследований и открывает новые методические возможности.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ЛАЗЕРНОГО ИНИЦИИРОВАНИЯ | 2018 |
|
RU2691381C1 |
ОПТИЧЕСКОЕ ВОЛОКОННОЕ УСТРОЙСТВО С БОКОВЫМ ВВОДОМ-ВЫВОДОМ ИЗЛУЧЕНИЯ | 2020 |
|
RU2750691C1 |
УСТРОЙСТВО ОПТИЧЕСКОГО ИНИЦИИРОВАНИЯ | 2022 |
|
RU2794055C1 |
Узел ввода лазерного излучения - общая конструкция, варианты использования компонентов объёмной оптики, оптический разъём | 2022 |
|
RU2800573C1 |
Отрывной оптический разъем | 2022 |
|
RU2801145C1 |
АВТОГИДИРУЮЩАЯ ОПТИКО-МЕХАНИЧЕСКАЯ СИСТЕМА ОПТОВОЛОКОННОГО СПЕКТРОГРАФА СО ВСТРЕЧНОЙ ЗАСВЕТКОЙ ОПТОВОЛОКНА | 2016 |
|
RU2625638C1 |
ПРИМЕНЕНИЕ ФОТОПОЛИМЕРИЗУЮЩЕЙСЯ КОМПОЗИЦИИ ДЛЯ КОННЕКТИРОВАНИЯ СВЕТОВОДОВ, СПОСОБ КОННЕКТИРОВАНИЯ СВЕТОВОДОВ И УСТРОЙСТВО ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА | 2011 |
|
RU2472189C1 |
СПОСОБ УСИЛЕНИЯ ЛАЗЕРНОГО ИЗЛУЧЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2010 |
|
RU2470334C2 |
Лазерный скальпель | 2023 |
|
RU2803933C1 |
ВОЛОКОННО-ОПТИЧЕСКИЙ НЕЙРОИНТЕРФЕЙС И СПОСОБ ДЛЯ ДОЛГОВРЕМЕННОЙ ОПТИЧЕСКОЙ РЕГИСТРАЦИИ ПРОЦЕССОВ В МОЗГЕ ЖИВЫХ СВОБОДНО ДВИЖУЩИХСЯ ЖИВОТНЫХ | 2015 |
|
RU2637823C2 |
Изобретение относится к оптическим элементам, в частности к компактным элементам фокусировки и сбора лазерного излучения. Оптический волоконный датчик включает фокусирующий и собирающий элемент, которые сформированы из оптического волокна датчика путем оплавления торца с приданием ему сфероподобной формы, диаметр которого превышает диаметр оптического волокна в 1,2-1,5 раз. Техническим результатом заявляемого изобретения является повышение технологичности изготовления, уменьшение стоимости, уменьшение габаритов. 2 ил.
Оптический волоконный датчик, включающий фокусирующий и собирающий элемент, отличающийся тем, что фокусирующий и собирающий элемент сформирован из оптического волокна датчика путем оплавления торца с приданием ему сфероподобной формы, диаметр которого превышает диаметр оптического волокна в 1,2-1,5 раз.
Сканирующее устройство | 1991 |
|
SU1804638A3 |
ОПТИЧЕСКИЙ ЭЛЕМЕНТ СТАБИЛИЗАТОРА ФОКУСИРОВКИ ИЗЛУЧЕНИЯ В ОПТИЧЕСКОЕ ВОЛОКНО | 2017 |
|
RU2670241C1 |
УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ ИНТЕГРАЛЬНОЙ ОПТИЧЕСКОЙ ВОЛНОВОДНОЙ СТРУКТУРЫ | 2015 |
|
RU2617455C1 |
УСТРОЙСТВО ДЛЯ ИЗГОТОВЛЕНИЯ АРМИРОВАННОЙ | 0 |
|
SU180036A1 |
Авторы
Даты
2019-10-29—Публикация
2018-12-20—Подача