Способ ресурсных испытаний газотурбинного двигателя Российский патент 2019 года по МПК G01M15/14 G01M13/00 

Описание патента на изобретение RU2706514C1

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний авиационных газотурбинных двигателей.

Большинство отказов газотурбинных двигателей на этапе доводки и эксплуатации связано с проблемами прочности, в частности, вызванными усталостными разрушениями, которые характерны для деталей, подверженных динамическим нагрузкам. Для лопаток турбомашин такими нагрузками являются неравномерности газовоздушного потока в проточной части двигателя. Роторные лопатки, вращаясь в таком возмущенном потоке с равномерной скоростью, подвергаются периодическим импульсам, частота которых кратна частоте вращения ротора и числу конструктивных элементов. Когда собственные частоты лопатки совпадают с частотой следования импульсов наступает резонанс. Он характеризуется резким возрастанием амплитуды вибронапряжений, приводящим к разрушению лопатки. Таким образом, при проведении ресурсных испытаний двигателя необходимо проводить наработку на резонансных режимах.

Известен способ ресурсных испытаний газотурбинного двигателя, включающий разбиение рабочей области частоты вращения ротора с рабочими лопатками на несколько диапазонов и наработке в каждом диапазоне времени нагружения, по прохождении которой при отсутствии повреждений на рабочих лопатках делают вывод о подтверждении ресурса. В известном способе рабочую область частот от малого газа до максимального режима разбивают на несколько диапазонов шириной до 5% от максимальной частоты вращения. В каждом диапазоне обеспечивается наработка из расчета 1 мин на 1 час наработки в рассматриваемом диапазоне типового полетного цикла.

(Н.Н. Сиротин, «Конструкция и эксплуатация, повреждаемость и работоспособность газотурбинного двигателя», Москва, РИА-ИНФОРМ, 2002, стр. 353 - прототип).

Указанный способ не обеспечивает достаточного подтверждения динамической прочности элементов двигателя, а именно рабочих лопаток ротора, так как не гарантируется отработка, требуемая для подтверждения динамической прочности, а также отсутствуют наработки на резонансных режимах, которые всегда имеют место в рабочей области частоты вращения.

Технический результат предлагаемого изобретения заключается в повышении достоверности подтверждения динамической прочности рабочих лопаток ротора.

Указанный технический результат достигается тем, что в известном способе ресурсных испытаний газотурбинного двигателя, включающем разбиение рабочей области частоты вращения ротора с рабочими лопатками на несколько диапазонов и наработке в каждом диапазоне времени нагружения Т, по прохождении которой при отсутствии повреждений на рабочих лопатках делают вывод о подтверждении ресурса, согласно предложению для всех рабочих лопаток определяют частоту их собственных колебаний по первой изгибной форме f1, и по наименьшему значению собственной частоты колебаний f1min определяют время нагружения Т по зависимости:

где N - нормативная база нагружения, равная 20⋅106 циклов, затем рабочую область частоты вращения ротора для испытуемого двигателя разбивают на площадки шириной 0,4-0,5% от минимального значения частоты рабочей области, после чего на каждой площадке производят наработку по времени нагружения Т при средней частоте вращения ротора для данной площадки.

Предлагаемый способ позволяет подтвердить ресурс двигателя по рабочим лопаткам компрессора и/или турбины.

Частота при колебаниях по первой изгибной форме является низшей из собственных частот колебаний лопатки. При этой форме колебаний в лопатке, как правило, возникают наибольшие вибронапряжения, приводящие к ее разрушению. Таким образом, предварительное определение собственных частот колебаний по первой изгибной форме и расчет времени наработки исходя из минимальной частоты собственных колебаний при проведении ресурсных испытаний позволяет достоверно определить наличие повреждений рабочих лопаток.

Резонансные режимы, как правило, имеют узкий диапазон частоты вращения - ширина площадки по частоте вращения составляет 1-1,5%. Предлагаемый способ позволяет проводить наработку при резонансных колебаниях, что достигается определением конкретной величины наработки времени нагружения Т исходя из нормативной базы и разбиением рабочей области частоты вращения на площадки шириной 0,4-0,5%, которое гарантирует в диапазоне резонанса отработку 2-3-х кратного времени нагружения Т.

Исходя из норм прочности наработка на резонансных режимах должна соответствовать нагружению 20⋅106 циклов. Интервал рабочих частот вращения ротора определяется конкретным типом двигателя.

Пример реализации способа на рабочих лопатках турбины.

На экспериментальной установке типа «Сирена» перед установкой рабочих лопаток турбины в ротор проводят испытания по определению частоты собственных колебаний по первой изгибной форме f1.

Результаты испытаний каждой лопатки из комплекта, предназначенного для установки в ротор, приведены на фигуре в виде зависимости частоты f1 по номеру лопатки в комплекте, состоящем из 60 лопаток. На фигуре видно, что наименьшую частоту колебаний равную f1=l839 Гц имеет лопатка номер 27. Для этой лопатки вычисляют время Т нагружения комплекта рабочих лопаток турбины:

Т=20⋅106/1839=10875,5 сек (или 3 час. 1 мин. 15,5 сек.).

Рабочий диапазон для конкретного испытуемого двигателя по частоте вращения составляет 11200-12150 об/мин. Минимальное значение частоты вращения составляет 11200 об/мин., а ширина площадки будет равна (0,004-0,005)⋅11200=44,8-56 об/мин. Для удобства разбиения рабочего диапазона принимают ширину площадки 50 об/мин.

Таким образом, рабочий диапазон частот разбивают на следующие площадки: 11200-11250; 11250-11300; 11300-11350; … 12000-12050; 12050-12100; 12100-12150, об/мин..

Осуществляют наработку, равную времени нагружения Т=10875,5 сек на каждой частоте вращения, равной среднему значению на каждой площадке, а именно на частотах вращения 11225; 11275; 11325; … 12025; 12075; 12125 об/мин.

В результате проведения наработки выявлено отсутствие дефектов на всех испытуемых лопатках, сделан вывод о возможности их установки в двигатель и о подтверждении ресурса двигателя.

Похожие патенты RU2706514C1

название год авторы номер документа
Способ эксплуатации авиационного газотурбинного двигателя по его техническому состоянию 2020
  • Капилюшов Сергей Владимирович
  • Лебёдкина Наталья Николаевна
RU2753789C1
СПОСОБ СЕРИЙНОГО ПРОИЗВОДСТВА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, ВЫПОЛНЕННЫЙ ЭТИМ СПОСОБОМ 2013
  • Артюхов Александр Викторович
  • Еричев Дмитрий Юрьевич
  • Кирюхин Владимир Валентинович
  • Кондрашов Игорь Александрович
  • Куприк Виктор Викторович
  • Манапов Ирик Усманович
  • Марчуков Евгений Ювенальевич
  • Мовмыга Дмитрий Алексеевич
  • Симонов Сергей Анатольевич
  • Селиванов Николай Павлович
  • Шабаев Юрий Геннадьевич
RU2551013C1
СПОСОБ СЕРИЙНОГО ПРОИЗВОДСТВА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, ВЫПОЛНЕННЫЙ ЭТИМ СПОСОБОМ 2013
  • Артюхов Александр Викторович
  • Еричев Дмитрий Юрьевич
  • Кирюхин Владимир Валентинович
  • Кондрашов Игорь Александрович
  • Куприк Виктор Викторович
  • Манапов Ирик Усманович
  • Марчуков Евгений Ювенальевич
  • Мовмыга Дмитрий Алексеевич
  • Симонов Сергей Анатольевич
  • Селиванов Николай Павлович
  • Шабаев Юрий Геннадьевич
RU2551915C1
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ 2018
  • Богданов Михаил Анатольевич
  • Гогаев Георгий Павлович
  • Шубин Игорь Аркадьевич
  • Немцев Дмитрий Владимирович
RU2696523C1
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2013
  • Артюхов Александр Викторович
  • Еричев Дмитрий Юрьевич
  • Иванов Игорь Николаевич
  • Кирюхин Владимир Валентинович
  • Кондрашов Игорь Александрович
  • Котельников Андрей Ростиславович
  • Куприк Виктор Викторович
  • Манапов Ирик Усманович
  • Марчуков Евгений Ювенальевич
  • Симонов Сергей Анатольевич
  • Селиванов Вадим Николаевич
RU2544638C1
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ 2003
  • Кирюхин В.В.
  • Колотников М.Е.
  • Марчуков Е.Ю.
  • Мельник В.И.
  • Чепкин В.М.
RU2236671C1
СПОСОБ КАПИТАЛЬНОГО РЕМОНТА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ (ВАРИАНТЫ) И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, ОТРЕМОНТИРОВАННЫЙ ЭТИМ СПОСОБОМ (ВАРИАНТЫ), СПОСОБ КАПИТАЛЬНОГО РЕМОНТА ПАРТИИ, ПОПОЛНЯЕМОЙ ГРУППЫ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, ОТРЕМОНТИРОВАННЫЙ ЭТИМ СПОСОБОМ 2013
  • Артюхов Александр Викторович
  • Еричев Дмитрий Юрьевич
  • Кондрашов Игорь Александрович
  • Куприк Виктор Викторович
  • Манапов Ирик Усманович
  • Марчуков Евгений Ювенальевич
  • Мовмыга Дмитрий Алексеевич
  • Симонов Сергей Анатольевич
  • Селезнев Александр Сергеевич
  • Шабаев Юрий Геннадиевич
RU2555922C2
СПОСОБ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2008
  • Иноземцев Александр Александрович
  • Семенов Александр Николаевич
  • Андрейченко Игорь Леонардович
  • Полатиди Людмила Борисовна
  • Полатиди Софокл Харлампович
  • Саженков Алексей Николаевич
  • Сычев Владимир Константинович
  • Ступников Владимир Леонидович
RU2389998C1
СПОСОБ КАПИТАЛЬНОГО РЕМОНТА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ (ВАРИАНТЫ) И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, ОТРЕМОНТИРОВАННЫЙ ЭТИМ СПОСОБОМ (ВАРИАНТЫ), СПОСОБ КАПИТАЛЬНОГО РЕМОНТА ПАРТИИ, ПОПОЛНЯЕМОЙ ГРУППЫ ГАЗОТУРБИННЫХ ДВИГАТЕЛЕЙ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ, ОТРЕМОНТИРОВАННЫЙ ЭТИМ СПОСОБОМ 2013
  • Артюхов Александр Викторович
  • Кондрашов Игорь Александрович
  • Куприк Виктор Викторович
  • Манапов Ирик Усманович
  • Марчуков Евгений Ювенальевич
  • Мовмыга Дмитрий Алексеевич
  • Симонов Сергей Анатольевич
  • Кузнецов Игорь Сергеевич
  • Селезнев Александр Сергеевич
  • Шабаев Юрий Геннадиевич
RU2555936C2
СПОСОБ ДОВОДКИ ОПЫТНОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2013
  • Артюхов Александр Викторович
  • Еричев Дмитрий Юрьевич
  • Иванов Игорь Николаевич
  • Кирюхин Владимир Валентинович
  • Кондрашов Игорь Александрович
  • Куприк Виктор Викторович
  • Манапов Ирик Усманович
  • Марчуков Евгений Ювенальевич
  • Мовмыга Дмитрий Алексеевич
  • Поляков Константин Сергеевич
  • Симонов Сергей Анатольевич
  • Селиванов Николай Павлович
  • Шабаев Юрий Геннадьевич
RU2544419C1

Иллюстрации к изобретению RU 2 706 514 C1

Реферат патента 2019 года Способ ресурсных испытаний газотурбинного двигателя

Изобретение относится к области авиадвигателестроения, а именно к способам испытаний авиационных газотурбинных двигателей. Способ ресурсных испытаний газотурбинного двигателя включает разбиение рабочей области частоты вращения ротора с рабочими лопатками на несколько диапазонов и наработку в каждом диапазоне времени нагружения Т, по прохождении которой при отсутствии повреждений на рабочих лопатках делают вывод о подтверждении ресурса. Для всех рабочих лопаток определяют частоту их собственных колебаний по первой изгибной форме f1, и по наименьшему значению собственной частоты колебаний f1min определяют время нагружения Т по зависимости: , где N - нормативная база нагружения, равная 20⋅106 циклов, затем рабочую область частоты вращения ротора для испытуемого двигателя разбивают на площадки шириной 0,4-0,5% от минимального значения частоты рабочей области, после чего на каждой площадке производят наработку по времени нагружения Т при средней частоте вращения ротора для данной площадки. Изобретение позволяет повысить достоверность подтверждения динамической прочности рабочих лопаток ротора. 1 ил.

Формула изобретения RU 2 706 514 C1

Способ ресурсных испытаний газотурбинного двигателя, включающий разбиение рабочей области частоты вращения ротора с рабочими лопатками на несколько диапазонов и наработку в каждом диапазоне времени нагружения Т, по прохождении которой при отсутствии повреждений на рабочих лопатках делают вывод о подтверждении ресурса, отличающийся тем, что для всех рабочих лопаток определяют частоту их собственных колебаний по первой изгибной форме f1, и по наименьшему значению собственной частоты колебаний f1min определяют время нагружения Т по зависимости:

где N - нормативная база нагружения, равная 20⋅106 циклов, затем рабочую область частоты вращения ротора для испытуемого двигателя разбивают на площадки шириной 0,4-0,5% от минимального значения частоты рабочей области, после чего на каждой площадке производят наработку по времени нагружения Т при средней частоте вращения ротора для данной площадки.

Документы, цитированные в отчете о поиске Патент 2019 года RU2706514C1

СИРОТИН Н.Н
Конструкция и эксплуатация, повреждаемость и работоспособность газотурбинных двигателей
— М.: РИА "ИМ-Информ", 2002, стр
Замкнутая радиосеть с несколькими контурами и с одной неподвижной точкой опоры 1918
  • Баженов В.И.
  • Плебанский И.Ф.
SU353A1
СПОСОБ ЭКСПЛУАТАЦИИ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ ПО ЕГО ТЕХНИЧЕСКОМУ СОСТОЯНИЮ 2003
  • Кирюхин В.В.
  • Колотников М.Е.
  • Марчуков Е.Ю.
  • Мельник В.И.
  • Чепкин В.М.
RU2236671C1
ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2013
  • Артюхов Александр Викторович
  • Еричев Дмитрий Юрьевич
  • Иванов Игорь Николаевич
  • Кирюхин Владимир Валентинович
  • Кондрашов Игорь Александрович
  • Котельников Андрей Ростиславович
  • Куприк Виктор Викторович
  • Манапов Ирик Усманович
  • Марчуков Евгений Ювенальевич
  • Симонов Сергей Анатольевич
  • Селиванов Вадим Николаевич
RU2544638C1
СПОСОБ ОЦЕНКИ ТЕХНИЧЕСКОГО СОСТОЯНИЯ АВИАЦИОННОГО ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2008
  • Иноземцев Александр Александрович
  • Семенов Александр Николаевич
  • Андрейченко Игорь Леонардович
  • Полатиди Людмила Борисовна
  • Полатиди Софокл Харлампович
  • Саженков Алексей Николаевич
  • Сычев Владимир Константинович
  • Ступников Владимир Леонидович
RU2389998C1

RU 2 706 514 C1

Авторы

Куприк Виктор Викторович

Марчуков Евгений Ювенальевич

Даты

2019-11-19Публикация

2019-01-11Подача