ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ СКАНИРУЮЩЕГО СПЕКТРОМЕТРА ФЕРРОМАГНИТНОГО РЕЗОНАНСА С ЧАСТОТНОЙ ПОДСТРОЙКОЙ Российский патент 2019 года по МПК G01R33/20 

Описание патента на изобретение RU2707421C1

Изобретение относится к измерительной технике и предназначено для неразрушающего контроля качества и однородности магнитных пленок путем регистрации (записи) спектров ферромагнитного резонанса от локальных участков тонкопленочных образцов.

Известно устройство [Frait Z., Kambersky V., Malek Z., Ondris M. Local variations of uniaxial anisotropy in thin films // Czechosl. Journ. Phys. 1960. Vol.10. P. 616-617], предназначенное для измерений параметров ферромагнитного резонанса (ФМР) от различных локальных участков образцов тонких магнитных пленок (ТМП). В качестве чувствительного элемента в устройстве используется объемный резонатор на частоте ~10 ГГц с колебаниями типа Н111, который имеет в центре стенки измерительное отверстие диаметром около 0.1 мм. Исследуемый образец прикладывается к отверстию с внешней стороны полости резонатора. Сканирование осуществляется путем перемещения и вращения образца относительно измерительного отверстия. По угловым зависимостям параметров ФМР определяются основные магнитные характеристики локального участка исследуемого образца ТМП: эффективная намагниченность насыщения, параметр затухания, магнитная анизотропия и др. Чувствительность устройства пропорциональна отношению Q/V [Абрагам А., Блини Б. Электронный парамагнитный резонанс переходных ионов. Том I: пер. с англ. М.: Мир, 1972. 651 с], где Q - добротность резонатора; V - эффективный объем СВЧ-резонатора.

Известен также микроволновый магнитный микроскоп, работающий на частоте -10 ГГц [SoohoR. F. A microwave magnetic microscope // Jour. Appl.

Phys., Suppl. 1962. Vol. 33(3). P. 1276-1277], представляющий собой сканирующий спектрометр ФМР, позволяющий проводить измерение резонансных параметров локальных участков образцов ТМП, на основе которых определяются магнитные характеристики этих участков. Исследуемый образец размещается с внешней стороны задней стенки резонатора, имеющей в центре небольшое отверстие, благодаря которому только малый локальный участок образца подвержен непосредственному действию высокочастотного поля резонатора. Спектр ФМР снимается путем изменения постоянного магнитного поля, приложенного к образцу ортогонально высокочастотному магнитному полю резонатора. Перемещая образец относительно отверстия в резонаторе, можно измерять распределения магнитных характеристик по площади ТМП.

Наиболее близким аналогом по совокупности существенных признаков является чувствительный элемент сканирующего спектрометра ферромагнитного резонанса [Беляев Б. А., Лексиков А.А., Макиевский И.Я., Тюрнев В.В. Спектрометр ферромагнитного резонанса // ПТЭ. 1997. №3. С. 106-111 (прототип)], представляющий собой корпус, внутри которого размещается микрополосковый резонатор с измерительным отверстием, вытравленным в металлизации его экрана. Микрополосковый резонатор является задающим контуром транзисторного СВЧ-генератора. К резонатору подключается амплитудный детектор (АД), с которого снимается сигнал, пропорциональный величине поглощения СВЧ-мощности участком пленки, расположенным под отверстием резонатора. Сканирование осуществляется путем перемещения и вращения исследуемого образца относительно измерительного отверстия. Данная конструкция выбрана прототипом заявленного изобретения.

Недостатком описанных выше устройств, в том числе конструкции-прототипа, является фиксированная частота высокочастотного магнитного поля резонатора. Для обеспечения высокой чувствительности в этих устройствах используют объемные или микрополосковые резонаторы с высокой добротностью, работающие на фиксированных частотах, что не позволяет проводить измерения частотных зависимостей магнитных характеристик на локальных участках ТМП. Тогда как известны применения магнитных пленок, например, в датчиках слабых магнитных полей [Бабицкий А. Н., Беляев Б.А., Боев Н.М., Скоморохов Г.В., Изотов А.В., Галеев Р.Г. Магнитометр слабых квазистационарных и высокочастотных полей на резонансных микрополосковых преобразователях с тонкими магнитными пленками // Приборы и техника эксперимента. 2016. №3. С. 96-104], возбуждение ТМП в которых происходит на оптимальной частоте в диапазоне 0.4-0.8 ГГц. Особую важность для обеспечения предельной чувствительности датчиков слабых магнитных полей имеет задача определения магнитных характеристик ТМП во всем диапазоне частот для выбора оптимальной рабочей частоты.

Техническим результатом заявляемого изобретения является обеспечение возможности частотной подстройки чувствительного элемента сканирующего спектрометра ФМР.

Заявляемый технический результат достигается тем, что в чувствительном элементе сканирующего спектрометра ферромагнитного резонанса с частотной подстройкой, содержащем СВЧ-генератор с задающим резонатором, амплитудный детектор и взаимодействующий с измеряемым участком образца элемент, выполненный в виде экрана с измерительным отверстием, размещенным под резонатором, новым является то, что над измерительным отверстием располагается индуктивный элемент задающего резонатора СВЧ-генератора, причем СВЧ-генератор дополнительно содержит один или более варикапов, предназначенных для подстройки частоты задающего резонатора и для регулировки коэффициента положительной обратной связи, а также дополнительно содержит вход для регулировки тока базы транзистора.

Сопоставительный анализ с прототипом показывает, что заявляемое устройство отличается наличием индуктивного элемента задающего резонатора СВЧ-генератора, расположенного над измерительным отверстием, а также наличием варикапов, предназначенных для подстройки частоты задающего резонатора и для регулировки коэффициента положительной обратной связи. Существенное отличие заключается в том, что одновременно с подстройкой частоты задающего резонатора осуществляется регулировка коэффициента положительной обратной связи и режима работы СВЧ-генератора - это позволяет для каждого значения рабочей частоты чувствительного элемента выбирать оптимальный режим работы по критерию максимума отношения сигнал/шум.

Таким образом, перечисленные выше отличительные от прототипа признаки позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна».

Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».

Данное изобретение поясняется чертежами. На фиг. 1 представлена электрическая принципиальная схема чувствительного элемента сканирующего спектрометра ферромагнитного резонанса с частотной подстройкой, а на фиг.2 показана его конструкция.

Чувствительный элемент сканирующего спектрометра ферромагнитного резонанса с частотной подстройкой содержит (фиг.1) транзисторный СВЧ-генератор (1) по схеме Клаппа с общим эмиттером и заземленным коллектором. СВЧ-генератор (1) включает задающий резонатор с высокодобротными варикапами (2, 3) и индуктивным элементом (4). Амплитудный детектор (5) своим входом подключен к резонатору СВЧ-генератора (1), а его выходной сигнал является выходным сигналом устройства. Под индуктивным элементом (4) задающего резонатора размещается измерительное отверстие (6), вытравленное (фиг. 2) в экране (7). Исследуемый образец размещается вблизи измерительного отверстия (6), диаметр которого определяет площадь исследуемой локальной области образца ТМП. Электрорадиоизделия устройства размещаются на верхней стороне печатной платы (8), закрепляемой в корпусе (9). Корпус (9) устанавливается в сканирующий спектрометр ферромагнитного резонанса с помощью полого штока, внутри которого прокладывают провода питания и провода, соединяющие выход амплитудного детектора (6) с блоком обработки сигналов сканирующего спектрометра ФМР.

Устройство работает следующим образом. Транзисторный СВЧ-генератор (1) возбуждает колебания в задающем резонаторе, индуктивная часть (4) которого размещается над измерительным отверстием (6) в экране (7). Частота возбуждения СВЧ-генератора определяется из выражения ω2=[1/С1+1/(С2+С3)+1/(С4+С5)]/L, где С1 и (С2+С3) - емкости обратной связи, (С4+С5) - емкость резонатора, L - индуктивность резонатора. Вблизи измерительного отверстия (6) локализуется высокочастотное магнитное поле. ТМП размещается со стороны экрана (7) исследуемым участком к измерительному отверстию (6). Переменное магнитное поле взаимодействует с локальной областью исследуемого образца. При развертке постоянного магнитного поля, ортогонального направлению переменного поля, происходит поглощение электромагнитной энергии образцом в условиях ФМР, что приводит к изменению амплитуды колебаний генератора, фиксируемого АД (5). Выходной сигнал АД (5), пропорциональный величине поглощения СВЧ-мощности образцом, поступает в блок обработки сигналов сканирующего спектрометра ФМР. Сканирование осуществляется путем перемещения и вращения исследуемого тонкопленочного образца относительно измерительного отверстия (6) со стороны экрана (7). Частотное сканирование осуществляется путем подачи регулирующих напряжений на входы А, Б и В. Причем заранее для каждого значения частоты (регулируется напряжениями на варикапах (2, 3), подаваемыми на входы А и Б), определяются оптимальное значение коэффициента положительной обратной связи (регулируется напряжением на входе Б) и оптимальный режим работы СВЧ-генератора (определяется напряжением на входе В) по критерию максимума отношения сигнал/шум чувствительного элемента.

Предложенная конструкция чувствительного элемента сканирующего спектрометра ФМР с частотной подстройкой может быть использована для измерения частотных зависимостей различных магнитных характеристик тонкопленочных образцов. Экспериментальные исследования заявленного чувствительного элемента сканирующего спектрометра ФМР с частотной подстройкой показали возможность измерения частотных зависимостей в диапазоне f0±10%.

Похожие патенты RU2707421C1

название год авторы номер документа
СВЧ-ГОЛОВКА СКАНИРУЮЩЕГО СПЕКТРОМЕТРА ФЕРРОМАГНИТНОГО РЕЗОНАНСА 2019
  • Беляев Борис Афанасьевич
  • Боев Никита Михайлович
  • Изотов Андрей Викторович
  • Скоморохов Георгий Витальевич
  • Подшивалов Иван Валерьевич
RU2715082C1
СКАНИРУЮЩИЙ СПЕКТРОМЕТР ФЕРРОМАГНИТНОГО РЕЗОНАНСА 2020
  • Беляев Борис Афанасьевич
  • Горчаковский Александр Антонович
  • Боев Никита Михайлович
  • Изотов Андрей Викторович
  • Шабанов Дмитрий Александрович
RU2747100C1
Спектрометр ферромагнитного резонанса 2022
  • Горчаковский Александр Антонович
  • Подшивалов Иван Валерьевич
  • Боев Никита Михайлович
  • Клешнина Софья Андреевна
  • Соловьев Платон Николаевич
  • Изотов Андрей Викторович
  • Крёков Сергей Дмитриевич
  • Бурмитских Антон Владимирович
  • Негодеева Ирина Александровна
  • Волошин Александр Сергеевич
RU2791860C1
ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ СКАНИРУЮЩЕГО СПЕКТРОМЕТРА ФЕРРОМАГНИТНОГО РЕЗОНАНСА 2018
  • Беляев Борис Афанасьевич
  • Боев Никита Михайлович
  • Изотов Андрей Викторович
RU2691996C1
Тонкопленочный градиентометр 2018
  • Бабицкий Александр Николаевич
  • Беляев Борис Афанасьевич
  • Боев Никита Михайлович
  • Изотов Андрей Викторович
  • Клешнина Софья Андреевна
RU2687557C1
Способ исследования и неразрушающего контроля магнитных пленок 1982
  • Кожухарь Анатолий Юрьевич
  • Линев Владимир Николаевич
  • Фурса Евгений Яковлевич
  • Шагаев Владимир Васильевич
SU1065750A1
СПОСОБ ИЗМЕРЕНИЯ МАГНИТНЫХ ПАРАМЕТРОВ НАНОМАТЕРИАЛОВ 2010
  • Игнатьев Александр Анатольевич
  • Куликов Михаил Николаевич
  • Ляшенко Александр Викторович
  • Васильев Александр Васильевич
  • Маслов Андрей Алексеевич
RU2449303C1
Способ локального измерения удельного сопротивления полупроводникового материала 1983
  • Помялов Андрей Владимирович
SU1100544A1
Локальный широкополосный спектрометр ферромагнитного резонанса 2022
  • Бурмитских Антон Владимирович
  • Беляев Борис Афанасьевич
  • Боев Никита Михайлович
  • Изотов Андрей Викторович
RU2784818C1
СПОСОБ ИЗМЕРЕНИЯ МАГНИТНЫХ ХАРАКТЕРИСТИК ФЕРРОМАГНИТНЫХ ПЛЕНОК И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2019
  • Бабицкий Александр Николаевич
  • Беляев Борис Афанасьевич
  • Клешнина Софья Андреевна
  • Боев Никита Михайлович
  • Изотов Андрей Викторович
RU2714314C1

Иллюстрации к изобретению RU 2 707 421 C1

Реферат патента 2019 года ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ СКАНИРУЮЩЕГО СПЕКТРОМЕТРА ФЕРРОМАГНИТНОГО РЕЗОНАНСА С ЧАСТОТНОЙ ПОДСТРОЙКОЙ

Изобретение относится к измерительной технике и предназначено для неразрушающего контроля качества и однородности магнитных пленок путем регистрации (записи) спектров ферромагнитного резонанса от локальных участков тонкопленочных образцов. Чувствительный элемент сканирующего спектрометра ферромагнитного резонанса с частотной подстройкой содержит СВЧ-генератор с задающим резонатором, амплитудный детектор и взаимодействующий с измеряемым участком образца элемент, выполненный в виде экрана с измерительным отверстием, размещенным под резонатором, при этом над измерительным отверстием располагается индуктивный элемент задающего резонатора СВЧ-генератора, причем СВЧ-генератор дополнительно содержит один или более варикапов, предназначенных для подстройки частоты задающего резонатора и для регулировки коэффициента положительной обратной связи, а также дополнительно содержит вход для регулировки тока базы транзистора. Технический результат – возможность частотной подстройки чувствительного элемента сканирующего спектрометра ФМР. 2 ил.

Формула изобретения RU 2 707 421 C1

Чувствительный элемент сканирующего спектрометра ферромагнитного резонанса с частотной подстройкой, содержащий СВЧ-генератор с задающим резонатором, амплитудный детектор и взаимодействующий с измеряемым участком образца элемент, выполненный в виде экрана с измерительным отверстием, размещенным под резонатором, отличающийся тем, что над измерительным отверстием располагается индуктивный элемент задающего резонатора СВЧ-генератора, причем СВЧ-генератор дополнительно содержит один или более варикапов, предназначенных для подстройки частоты задающего резонатора и для регулировки коэффициента положительной обратной связи, а также дополнительно содержит вход для регулировки тока базы транзистора.

Документы, цитированные в отчете о поиске Патент 2019 года RU2707421C1

СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ ФЕРРОМАГНИТНЫХ МАТЕРИАЛОВ 1998
  • Беляев Б.А.
  • Лексиков А.А.
  • Макиевский И.Я.
  • Овчинников С.Г.
RU2160441C2
Многодисковая пескометная головка 1954
  • Шмяков А.М.
SU114159A1
Способ определения структуры тонких магнитных пленок 1980
  • Иевенко Людмила Алексеевна
  • Кожухарь Анатолий Юрьевич
  • Устинов Валерий Михайлович
SU917150A1
US 5030914 A1, 09.07.1991
US 7034550 B2, 25.04.2006.

RU 2 707 421 C1

Авторы

Беляев Борис Афанасьевич

Боев Никита Михайлович

Изотов Андрей Викторович

Скоморохов Георгий Витальевич

Подшивалов Иван Валерьевич

Даты

2019-11-26Публикация

2019-03-29Подача