Изобретение относится к военной технике и может быть использовано при разработке и применении боеприпасов с ударными ядрами, формируемыми взрывом из тонких металлических оболочек.
В современных боеприпасах ударные ядра, как правило, формируются с помощью самоприцеливающихся боевых элементов. Самоприцеливающиеся боевые элементы (СПБЭ), осуществляют поиск цели на конечном участке полета при приближении к земле. Для торможения и стабилизации СПБЭ широко используются парашюты. На участке поиска самоприцеливающийся боевой элемент обычно расположен под определенным углом к вертикали, и совершает вращение вокруг продольной оси. Сенсоры боевого элемента совершают обзор местности, и форма площади обзора представляет собой сходящуюся спираль. При обнаружении цели осуществляется подрыв боевого элемента, формируется ударное ядро, которое поражает цель. Широко известны СПБЭ SMArt (Германия), SADARM (США), описания которых приведены в журналах: «Зарубежное военное обозрение», №11, 1994 г.; «ARMADA», 1998 г., №6; «GLOBAL DEFENCE REVEW», 1998 г.
Недостатком таких боевых элементов является то, что при отсутствии в поле обзора сенсоров бронированной цели боевой элемент взрывается в момент контакта с местностью, практически не принося какого-либо урона противнику.
В предлагаемом техническом решении для повышения эффективности таких боеприпасов предлагается поиск бронированной техники с помощью сенсоров осуществлять на высотах более минимальной, примерно равной трем максимальным размерам танка (20-25 м). В случае отсутствия такой цели (при опускании боевого элемента на высоту, менее заданной) боевой элемент при подрыве формирует не одно, а множество ударных ядер. В этом случае осуществляется поражение объектов (живая сила, небронированные цели и пр.) на большой площади. За счет этого повышается эффективность боеприпаса.
Управление моментом подрыва боевого элемента осуществляется с помощью электронной системы, установленной в сам элемент, и программируемой при изготовлении элементов.
Как средство доставки боевых элементов используются планирующие авиационные бомбы типа CBU-971B, артиллерийские снаряды типа Smart-155, PI-SADARM, BONUS, крылатые ракеты типа AGM-158 JASSM и RGM/UGM-109D, ракеты ATACMS, М30, снаряды РС30 MLRS и MARS.
В качестве сенсоров для идентификации цели могут использоваться сенсоры, аналогичные, установленным в СПБЭ SMArt и другие (см. выше).
В качестве сенсоров для определения минимальной высоты элемента могут быть использованы минирадары, применяемые в неконтактных радиовзрывателях, например, на основе автодина, которые позволяют фиксировать высоты до 20-25 метров от поверхности (Кузнецов Н.С. Предложения по применению автодинов в современных радиовзрывателях // Научно-технический сборник ГНЦ РФ ФГУП «ЦНИИХМ им. Д.И. Менделеева», Боеприпасы. - 2017. - №2. - с. 38-43).
Приемы формирования множества поражающих элементов с помощью многослойных металлических облицовок, представленных выше боевых элементов, рассмотрены в работе автора (Кузнецов Н.С. Принципы создания высокоэффективных шрапнельных боеприпасов с поражающими элементами, формируемыми взрывом //Научно-технический сборник ГНЦ РФ ФГУП «ЦНИИХМ им. Д.И. Менделеева», Боеприпасы, 2016, №2, с. 54-59).
Пояснение принципа работы боевых элементов по заданной программе приведено на рисунке фиг. 1.
Фиг. 1. Боевой элемент и режимы его функционирования: а) боевой элемент: 1 - блок электроники системы управления сенсорами и взрывателем, 2 - блок детонационной разводки, 3 - корпус боевого элемента, 4 - взрывчатое вещество, 5 - многослойная облицовка, 6 - решетка, 7 - сенсорные устройства, 8 - взрыватель; б) режим подрыва боевого элемента с формированием сферической волны детонации А и множества ударных ядер; с) режим подрыва боевого элемента с отстрелом решетки 6, формированием плоской волны детонации Б и формированием множества ударных ядер.
На этом рисунке показано три (а, б, с) состояния боевого элемента и упрощенная конструкция самого элемента, а также показаны фронты создаваемых волн детонации (А и Б) при различных вариантах подрыва, а именно: а) при обнаружении бронированной цели (отстреливается металлическая решетка 6, формируется плоская волна детонации Б, и образуется одно большое ядро); б) в случае отсутствия бронированной цели при опускании боевого элемента ниже заданной высоты (формируется сферическая волна детонации А, и образуется множество ударных ядер).
Формирование различных типов волн детонации во взрывчатом веществе осуществляется с помощью многоточечного инициирования, управляемого взрывателем, который, в свою очередь, получает команды управления с блока электроники 1.
Предлагаемое техническое решение работает следующим образом.
Доставка боевых элементов в зону цели осуществляется различными носителями: авиабомбы, артиллерийские снаряды и пр. После выброса боевые элементы падают на землю, совершая круговые движения по обзору местности в зоне падения. При этом местность в зоне падения боевых элементов сканируется сенсорами, установленными на эти элементы. Эти сенсоры позволяют зафиксировать бронированную цель в направлении падения боевого элемента. Кроме сенсоров идентификации цели, на боевой элемент устанавливают сенсор-радиолокатор, который фиксирует момент опускания боевого элемента ниже заданной высоты от поверхности земли, а также устанавливают металлическую решетку перед облицовками, из которых формируются ударные ядра. При вылете облицовок из боевого элемента они рассекаются решеткой, образуя множество высокоскоростных металлических ядер.
При обнаружении бронированной цели (идентифицирована с помощью сенсоров) с боевого элемента отстреливается решетка и боевой элемент взрывается. Под действием плоской волны детонации во взрывчатом веществе 4 боевого элемента 3 формируется одно большое ядро. Плоская волна детонации Б формируется в блоке детонационной разводки 2 с помощью управляемого взрывателя 8.
В случае, если боевой элемент опустился на высоту ниже заданной, а бронированная цель не была обнаружена, с сенсора-радиолокатора подается команда управления на другой режим работы элемента, а именно, подается команда на подрыв взрывчатого вещества 4 путем создания сферической волны детонации Б. При этом тонкие металлические облицовки 5 бросаются в направлении металлической решетки 6, рассекаются ею на отдельные фрагменты, и в виде множества ядер летят в направлении падения боевого элемента, создавая большую площадь поражения. Эти ядра способны поразить легкобронированную технику и живую силу противника.
Применение такой схемы подрыва боевого элемента позволяет повысить эффективность боеприпаса.
Изложенные сведения о заявленном изобретении, охарактеризованном в независимом пункте формулы, свидетельствуют о возможности его осуществления с помощью описанных в заявке и известных средств и методов. Следовательно, заявленный способ соответствует условию промышленной применимости.
название | год | авторы | номер документа |
---|---|---|---|
БОЕПРИПАС МНОГОФАКТОРНОГО И ЗАПРЕГРАДНОГО ДЕЙСТВИЙ | 2014 |
|
RU2556046C1 |
БОЕВОЙ ЭЛЕМЕНТ НАПРАВЛЕННОГО ДЕЙСТВИЯ КАССЕТНОГО БОЕПРИПАСА | 2002 |
|
RU2221213C1 |
ЛЕГКИЙ СНАРЯД ОРУДИЯ БЛИЖНЕГО ДЕЙСТВИЯ (ГОРНОГО, ПЕХОТНОГО) | 2012 |
|
RU2520191C1 |
ПРОТИВОВЕРТОЛЕТНАЯ МИНА | 2001 |
|
RU2237859C2 |
СПОСОБ ПОРАЖЕНИЯ БРОНИРОВАННОЙ ЦЕЛИ И УСТРОЙСТВА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2000 |
|
RU2199713C2 |
КООРДИНАТОР ЦЕЛИ САМОПРИЦЕЛИВАЮЩЕГОСЯ БОЕВОГО ЭЛЕМЕНТА | 2005 |
|
RU2296287C1 |
Боевая часть с избирательным способом поражения | 2023 |
|
RU2820411C1 |
МНОГОЦЕЛЕВАЯ БОЕВАЯ ЧАСТЬ С ТРАНСФОРМИРУЕМОЙ ОБОЛОЧКОЙ УДАРНОГО ДЕЙСТВИЯ | 2000 |
|
RU2174210C1 |
КАССЕТНЫЙ СНАРЯД "ХОРС" | 2002 |
|
RU2230284C2 |
КУМУЛЯТИВНЫЙ БОЕПРИПАС МНОГОЦЕЛЕВОГО ДЕЙСТВИЯ | 2014 |
|
RU2564283C1 |
Изобретение относится к военной технике и может быть использовано при разработке и применении боеприпасов с боевыми элементами, формирующими ударные ядра. Технический результат – повышение эффективности боеприпасов. По способу после выброса из боеприпаса боевые элементы падают на землю, совершая круговые движения. При этом местность в зоне падения боевых элементов сканируют сенсорами, установленными на эти элементы. Эти сенсоры позволяют зафиксировать бронированную цель в направлении падения боевого элемента. Кроме сенсоров идентификации цели на боевой элемент устанавливают сенсор-радиолокатор, с помощью которого фиксируют момент опускания боевого элемента ниже заданной высоты от поверхности земли. Устанавливают металлическую решетку перед облицовками, из которых формируют ударные ядра. При обнаружении бронированной цели с боевого элемента отстреливают решетку и боевой элемент взрывается. Под действием плоской волны детонации во взрывчатом веществе боевого элемента формируют одно большое ядро. В случае, если боевой элемент опустился на высоту ниже заданной, а бронированная цель не была обнаружена, с сенсора-радиолокатора подают команду управления на другой режим работы. Подают команду на подрыв взрывчатого вещества путем создания сферической волны детонации. При этом тонкие металлические облицовки бросают в направлении металлической решетки, рассекают ею облицовки на отдельные фрагменты. В виде множества ядер они летят в направлении падения боевого элемента, создавая большую площадь поражения. 1 ил.
Способ поражения целей боеприпасом с ударными ядрами, формируемыми взрывом из тонких металлических облицовок, заключающийся в том, что с помощью боеприпаса выбрасывают боевой элемент на заданной высоте над местностью с поражаемыми целями, при опускании боевого элемента сенсорами боевого элемента определяют наличие цели, выдают команду на взрыватель для формирования волны детонации во взрывчатом веществе боевого элемента и подрывают боевой элемент с формированием ударных ядер, отличающийся тем, что боевой элемент снабжают металлической решеткой, установленной перед металлическими облицовками снаружи боевого элемента, с помощью сенсоров боевого элемента при приближении последнего к земле измеряют расстояние до подстилающей поверхности местности и идентифицируют тип цели; при идентификации цели как бронированная техника подают команду на отстрел металлической решетки, и выдают команду на взрыватель для формирования во взрывчатом веществе боевого элемента плоской волны детонации, и из металлических облицовок формируют одно ударное ядро, а в случае отсутствия бронированной цели при опускании боевого элемента до заданной минимальной высоты выдают команду на взрыватель для формирования во взрывчатом веществе боевого элемента сферической волны детонации и из металлических облицовок формируют множество ударных ядер.
Патрон для ламп накаливания | 1923 |
|
SU898A1 |
Токоприемник для повозок электрического транспорта | 1946 |
|
SU73007A1 |
RU 2017132403 A, 18.03.2019 | |||
САМОПРИЦЕЛИВАЮЩИЙСЯ БОЕПРИПАС | 1985 |
|
RU2128322C1 |
КООРДИНАТОР ЦЕЛИ САМОПРИЦЕЛИВАЮЩЕГОСЯ БОЕВОГО ЭЛЕМЕНТА | 2005 |
|
RU2296287C1 |
Авторы
Даты
2019-11-29—Публикация
2019-04-04—Подача