СПОСОБ ОБОГАЩЕНИЯ МЕТАЛЛОНОСНЫХ ПЕСКОВ Российский патент 2019 года по МПК B03B7/00 

Описание патента на изобретение RU2709256C1

Известен способ обогащения металлоносных песков, включающий извлечение магнитных частиц, создание на дне шлюза улавливающей постели из ранее извлеченных магнитных частиц, извлечение ценного минерала путем подачи песков в виде пульпы на шлюз при одновременном воздействии на нее магнитным полем снизу, съем и доводку концентрата (см. патент РФ №2168366, В03С 1/08, В03В 5/70, опубл. 10.06.2001). При этом ранее извлеченные магнитные частицы постепенно добавляют в пульпу в течение периода времени до съема концентрата, а пески до подачи на шлюз подвергают грохочению (классификации) по классу крупности не менее 1 мм.

Недостатком известного способа обогащения песков является низкая эффективность, причем извлечение магнитных частиц после грохочения (классификации) песков по классу крупности не менее 1 мм относится к числу затратных процессов, которые трудно осуществимы в промышленных условиях. Кроме того, рудные частицы в сростках с золотом и сульфидными минералами не извлекаются, а поступают с хвостами в отвал, что приводит к дополнительным потерям ценного компонента.

Наиболее близким по технической сущности к заявляемому является способ обогащения песков, включающий их дезинтеграцию и грохочение, извлечение магнитной фракции одновременно с дезинтеграцией и грохочением, гравитационное обогащение, доизвлечение мелких классов ценного компонента путем подачи хвостов гравитационного обогащения в виде пульпы на шлюз при одновременном воздействии на нее магнитным полем снизу, создание на дне шлюза улавливающей постели, съем и доводку концентрата. При этом улавливающую постель на дне шлюза создают в процессе доизвлечения мелких классов ценного минерала путем подачи на шлюз одновременно с подачей хвостов гравитационного обогащения ранее извлеченной магнитной фракции (см. Казимиров М.П., Солоденко А.Б., Технология и оборудование для обогащения шлихов промывочного прибора ПГШОК-50-2 // III конгресс обогатителей стран СНГ 20-23 марта 2001 года, Тезисы докладов. М.: МИСИС, 2001, с. 222).

Недостатком данного способа обогащения песков, как и в предыдущем аналоге, также является низкая эффективность, поскольку извлечение магнитной фракции достигается путем магнитной сепарации обогащаемых песков, осуществляемых одновременно с их дезинтеграцией и грохочением, что не позволяет реализовать данное техническое решение в промышленных условиях, к тому же оно относится к весьма затратному технологическому процессу и не всегда является экономически оправданным на практике. Причем хвосты гравитационного обогащения поступают на доизвлечение мелких классов ценного компонента без промежуточного грохочения, что не позволяет обеспечить, из-за разности размеров минеральных частиц, оптимальные технологические условия процесса доизвлечения металлоносных песков.

Техническим результатом предлагаемого способа является повышение эффективности обогащения песков за счет доизвлечения свободного россыпного и связанного золота в сростках с кварцем и сульфидными минералами.

Результат достигается тем, что способ обогащения золотосодержащих песков, включающий их дезинтеграцию и грохочение, извлечение магнитной фракции, гравитационное обогащение, промежуточное грохочение, доизвлечение мелких фракций ценного компонента в концентрат, отличается тем, что производят объединение концентратов гравитационного обогащения и доизвлеченных мелких фракций ценного компонента в один продукт, который направляют на дальнейшую перечистку на шлюзовой приставке путем намагничивания и размагничивания продукта постоянным полем высокой напряженности и градиента, создаваемым установкой намагничивающих и размагничивающих рядов постоянных магнитов, размещенных снизу желоба приставки поперек транспортируемого потока, а выделенный после перечистки концентрат разделяют на богатый продукт и непродуктивную фракцию хвостов, последнюю направляют на дальнейшее последовательное выделение сепарацией магнитной и электропроводной фракции, причем выделенную магнитную фракцию возвращают для повторного использования в процесс доизвлечения мелких классов ценного компонента, а электропроводную фракцию, содержащую сростки связанного золота с кварцем и сульфидными минералами, направляют на измельчение, последующую классификацию с выделением слива и песков, слив возвращают в оборот, а пески направляют на цианирование золота при интенсивном их перемешивании, хвосты цианирования отправляют на обезвреживание, а рабочие растворы на последующее сорбционное извлечение золота.

Способ обогащения песков отличается также тем, что магнитное поле приставки создают путем размещения постоянных магнитов с чередующийся полярностью с числом намагничивающих рядов не менее двух.

Способ обогащения песков отличается также тем, что размагничивание продукта производят на выходе из шлюзовой приставки при сполоске концентрата.

Сущность изобретения поясняется чертежами.

На фиг. 1 представлена технологическая схема, реализующая способ обогащения золотосодержащих песков.

На фиг. 2 представлена схема установки постоянных магнитов с указанием габаритов при размещении их под транспортирующим желобом шлюзовой приставки.

- вид А - параллельное расположение магнитов в намагничивающем ряду при расстоянии между ними 20 мм;

- вид В - угловое расположение магнитов в размагничивающем ряду при установке их на ребро.

На фиг. 3 приведена зависимость изменения напряженности магнитного поля и расчетной магнитной силы от расстояния между размещенными магнитами.

Сущность заявленного изобретения состоит в том, что в предлагаемом способе обогащения металлоносных песков, включающем их дезинтегацию и грохочение, извлечение магнитной фракции, гравитационное обогащение, доизвлечение мелких классов ценного компонента, производят объединение концентратов в один богатый продукт с последующей его перечисткой на магнитно-флокуляционной шлюзовой приставке при одновременном воздействии снизу на улавливающую постель шлюза постоянным полем с высоким значением напряженности и градиента, создаваемого размещением снизу желоба рядов из магнитов чередующейся полярности, установленных поперек транспортирующего потока гидросмеси минеральных частиц.

При этом оптимальное значение напряженности и градиента поля подбирают опытным путем в зависимости от параллельного и углового расположения магнитов чередующейся полярности (размещением на ребро) в намагничивающем и размагничивающем рядах.

Хвосты объединенного богатого концентрата в дальнейшем подвергают магнитной и электрической сепарации для повторного использования магнитной фракции в процессе доизвлечения мелких классов ценного компонента, а электропроводную фракцию, содержащую в минеральных зернах золото в сростках с кварцем и сульфидными минералами, направляют на измельчение в шаровую мельницу, а затем, после классификации продуктов, пески подвергают дальнейшему интенсивному цианидному выщелачиванию золота при перемешивании с выделением рабочих растворов, направляемых для сорбционного извлечения золота.

Пример конкретного осуществления способа.

Предлагаемый способ обогащения песков реализован на технологических пробах, отобранных в разных точках дражного полигона месторождения Джармагатай. При этом для проведения экспериментальных опытов первоначально формировалась средняя представительная технологическая проба из нескольких частных проб минерального сырья. Преобладающий класс крупности свободного золота был представлен в них зернами ценного компонента -0,315 мм, а частный выход рудных частиц, содержащих связанное золото в сростках с кварцем и сульфидными минералами, составлял 17%. Шлиховой комплекс тяжелых минералов в металлоносных песках был представлен минеральными зернами - 4 мм. Основными магнитными минералами шлихов являлись магнетит, титаномагнетит и пирротин, легко извлекаемые на сепараторах со слабым магнитным полем.

Экспериментальные опыты проведены на шлюзовой приставке. В качестве улавливающей постели использовали магнитные частицы, (основной вмещающий минерал - магнетит), крупностью -2+0,15 мм.

В качестве намагничивающих и размагничивающих магнитов, размещенных под желобом шлюзовой приставки, использовали постоянные магниты, изготовленные из сплава неодим-железо-бор. Основные размерные параметры используемых магнитов и изменение зависимости напряженности магнитного поля и расчетного значения силы магнитного взаимодействия над магнитами при параллельном и угловом расположении их между собой представлены на фиг. 2, 3.

Методика проведения опытов по обогащению песков на лабораторной установке.

Предварительно выделенная средняя проба из металлоносных песков подвергалась дезинтеграции и грохочению по классам крупности -8+16 мм, дальнейшему грохочению и гравитационному обогащению для выделения гравитационного концентрата и доизвлечения мелких классов ценного компонента (ДМК), концентраты объединялись в один продукт и направлялись на дальнейшую магнито-флокуляционную перечистку на шлюзовой приставке. Конструктивно шлюзовая приставка перечистки была выполнена с двумя намагничивающими и одним размагничивающим рядами магнитов. Причем ряды, сформированные из постоянных магнитов чередующейся полярности, устанавливались поперек транспортируемого потока при соотношении жидкого к твердому в пульпе 16:1. Расстояние между параллельно установленными магнитами в рядах составляло в намагничивающих рядах 20 мм, а при угловом размещении размагничивающих магнитов на выходе шлюзовой приставки составляло - между магнитами сверху полюсов - 40 мм, а снизу - 15 мм. Угол наклона магнитов чередующейся полярности к горизонтальной плоскости составлял 14°. (Принятые параметры по расстоянию размещения магнитов между собой и угла их наклона к горизонтальной плоскости определены на основании экспериментального замера оптимальной напряженности магнитного поля и расчетного значения магнитных сил).

Объединенный продукт подавался в голову шлюзовой приставки с размещенными снизу шлюза намагничивающими и размагничивающими рядами магнитов. Производили съем уловленного богатого концентрата, а хвосты с высоким содержанием магнитной и проводниковой фракции подвергали поочередно магнитной и электрической сепарации. Магнитную фракцию направляли для повторного доизвлечения мелких классов ДМК. Электропроводную фракцию, содержащую связанное золото в сростках с кварцем и сульфидными минералами, направляли для измельчения в шаровую мельницу с целью раскрытия сростков. После классификации продуктов в гидроциклоне выделяли слив и пески. Слив направляли в шаровую мельницу, а выделенные пески подвергали цианидному выщелачиванию при интенсивном перемешивании продуктов с целью выделения золота в рабочий раствор. Длительность цианидного выщелачивания золота в мешалках составляла 12 часов при концентрации, в %: NaCN - 0,05-0,1, СаО - 0,01-0,3 при рН равным 9-11. После сбора рабочего раствора его направляли на сорбционное выделение золота, а образуемые хвосты на дальнейшее обезвреживание.

Сравнительные показатели извлечения свободного мелкого золота и связанного в сростках с рудными частицами песков (кварцем и сульфидными минералами) представлены в табл.(фиг. 4).

Таким образом, путем сравнительной оценки полученных экспериментальных данных - известного прототипа и предлагаемого по заявке (таблица), установлено повышение степени извлечения свободного золота на 6-7%, а связанного золота - на 4,3%.

Похожие патенты RU2709256C1

название год авторы номер документа
СПОСОБ ОБОГАЩЕНИЯ ПЕСКОВ 2002
  • Закиев Р.Б.
  • Мязин В.П.
  • Закиева Н.И.
  • Рыбакова О.И.
RU2229937C2
СПОСОБ ПУЛЬПОПОДГОТОВКИ К ФЛОТАЦИИ МАГНИТНОЙ ФРАКЦИИ ИЗ ПРОДУКТОВ ОБОГАЩЕНИЯ СУЛЬФИДНЫХ МЕДНО-НИКЕЛЕВЫХ РУД, СОДЕРЖАЩИХ ФЕРРОМАГНИТНЫЕ МИНЕРАЛЫ ЖЕЛЕЗА И БЛАГОРОДНЫХ МЕТАЛЛОВ 2008
  • Чебурашкин Станислав Георгиевич
RU2370316C1
СПОСОБ ОБОГАЩЕНИЯ РОССЫПЕЙ 2001
  • Закиев Р.Б.
  • Мязин В.П.
  • Закиева Н.И.
  • Рыбакова О.И.
RU2212277C2
СПОСОБ КОМПЛЕКСНОГО ОБОГАЩЕНИЯ РОССЫПЕЙ И/ИЛИ ТЕХНОГЕННЫХ ОБРАЗОВАНИЙ БЛАГОРОДНЫХ МЕТАЛЛОВ И ЛИНИЯ КОМПЛЕКСНОГО ОБОГАЩЕНИЯ РОССЫПЕЙ И/ИЛИ ТЕХНОГЕННЫХ ОБРАЗОВАНИЙ БЛАГОРОДНЫХ МЕТАЛЛОВ 2020
  • Курганов Капитон Петрович
  • Курганов Андрей Капитонович
  • Пекарский Виталий Марьянович
RU2756444C1
Способ извлечения благородных металлов из россыпных и техногенных месторождений полезных ископаемых (варианты) и поточная линия для его осуществления 2017
  • Прокопьев Сергей Амперович
  • Болотин Михаил Леонидович
  • Прокопьев Евгений Сергеевич
RU2659910C1
СПОСОБ ИЗВЛЕЧЕНИЯ ЧАСТИЦ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ МЕТАЛЛОНОСНЫХ ПЕСКОВ И ПОТОЧНАЯ ЛИНИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Мязин Виктор Петрович
  • Дядин Валерий Иванович
  • Григорский Геннадий Александрович
  • Левченко Василий Николаевич
  • Муравьев Александр Павлович
  • Кондратьев Сергей Дмитриевич
  • Синичук Данил Андреевич
  • Щербанов Петр Сергеевич
RU2427431C1
ПРОМЫВОЧНЫЙ ПРИБОР ПГНВК 1994
  • Раздолькин Валентин Николаевич
  • Ястребов Константин Леонидович
  • Прокопьев Сергей Амперович
RU2080933C1
СПОСОБ ОБОГАЩЕНИЯ РОССЫПЕЙ И ТЕХНОЛОГИЧЕСКАЯ ЛИНИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Закиев Р.Б.
  • Мязин В.П.
  • Закиева Н.И.
  • Рыбакова О.И.
  • Пономарчук Г.П.
RU2187374C2
ПРОМЫВОЧНО-ОБОГАТИТЕЛЬНЫЙ ПРИБОР ДЛЯ ГЛИНИСТЫХ МЕТАЛЛОНОСНЫХ ПЕСКОВ 2000
  • Ястребов К.Л.
RU2198032C2
СПОСОБ ФЛОТАЦИИ УПОРНЫХ ТРУДНООБОГАТИМЫХ РУД БЛАГОРОДНЫХ МЕТАЛЛОВ 2015
  • Башлыкова Татьяна Викторовна
  • Пахомова Галина Алексеевна
  • Ларионова Вера Юрьевна
RU2624497C2

Иллюстрации к изобретению RU 2 709 256 C1

Реферат патента 2019 года СПОСОБ ОБОГАЩЕНИЯ МЕТАЛЛОНОСНЫХ ПЕСКОВ

Изобретение относится к области обогащения полезных ископаемых, а именно к извлечению тяжелых минералов из песков, содержащих магнитные частицы. Способ обогащения золотосодержащих песков включает их дезинтеграцию и грохочение, извлечение магнитной фракции, гравитационное обогащение, промежуточное грохочение, доизвлечение мелких фракций ценного компонента в концентрат. Производят объединение концентратов гравитационного обогащения и доизвлеченных мелких фракций ценного компонента в один продукт, который направляют на дальнейшую перечистку на шлюзовой приставке путем намагничивания и размагничивания продукта постоянным полем высокой напряженности и градиента, создаваемым установкой намагничивающих и размагничивающих рядов постоянных магнитов, размещенных снизу желоба приставки поперек транспортируемого потока. Выделенный после перечистки концентрат разделяют на богатый продукт и непродуктивную фракцию хвостов. Последнюю направляют на дальнейшее последовательное выделение сепарацией магнитной и электропроводной фракции. Выделенную магнитную фракцию возвращают для повторного использования в процесс доизвлечения мелких классов ценного компонента. Электропроводную фракцию, содержащую сростки связанного золота с кварцем и сульфидными минералами, направляют на измельчение, последующую классификацию с выделением слива и песков. Слив возвращают в оборот, а пески направляют на цианирование золота при интенсивном их перемешивании. Хвосты цианирования отправляют на обезвреживание, а рабочие растворы - на последующее сорбционное извлечение золота. Магнитное поле приставки создают путем размещения постоянных магнитов с чередующейся полярностью с числом намагничивающих рядов не менее двух. Размагничивание продукта производят на выходе из шлюзовой приставки при сполоске концентрата. Технический результат - повышение эффективности обогащения песков. 2 з.п. ф-лы, 4 ил., 1 табл.

Формула изобретения RU 2 709 256 C1

1. Способ обогащения золотосодержащих песков, включающий их дезинтеграцию и грохочение, извлечение магнитной фракции, гравитационное обогащение, промежуточное грохочение, доизвлечение мелких фракций ценного компонента в концентрат, отличающийся тем, что производят объединение концентратов гравитационного обогащения и доизвлеченных мелких фракций ценного компонента в один продукт, который направляют на дальнейшую перечистку на шлюзовой приставке путем намагничивания и размагничивания продукта постоянным полем высокой напряженности и градиента, создаваемым установкой намагничивающих и размагничивающих рядов постоянных магнитов, размещенных снизу желоба приставки поперек транспортируемого потока, а выделенный после перечистки концентрат разделяют на богатый продукт и непродуктивную фракцию хвостов, последнюю направляют на дальнейшее последовательное выделение сепарацией магнитной и электропроводной фракции, причем выделенную магнитную фракцию возвращают для повторного использования в процесс доизвлечения мелких классов ценного компонента, а электропроводную фракцию, содержащую сростки связанного золота с кварцем и сульфидными минералами, направляют на измельчение, последующую классификацию с выделением слива и песков, слив возвращают в оборот, а пески направляют на цианирование золота при интенсивном их перемешивании, хвосты цианирования отправляют на обезвреживание, а рабочие растворы - на последующее сорбционное извлечение золота.

2. Способ обогащения песков по п. 1, отличающийся тем, что магнитное поле приставки создают путем размещения постоянных магнитов с чередующейся полярностью с числом намагничивающих рядов не менее двух.

3. Способ обогащения песков по п. 1, отличающийся тем, что размагничивание продукта производят на выходе из шлюзовой приставки при сполоске концентрата.

Документы, цитированные в отчете о поиске Патент 2019 года RU2709256C1

СПОСОБ ОБОГАЩЕНИЯ ПЕСКОВ 2002
  • Закиев Р.Б.
  • Мязин В.П.
  • Закиева Н.И.
  • Рыбакова О.И.
RU2229937C2
СПОСОБ ИЗВЛЕЧЕНИЯ ЧАСТИЦ БЛАГОРОДНЫХ МЕТАЛЛОВ ИЗ МЕТАЛЛОНОСНЫХ ПЕСКОВ И ПОТОЧНАЯ ЛИНИЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Мязин Виктор Петрович
  • Дядин Валерий Иванович
  • Григорский Геннадий Александрович
  • Левченко Василий Николаевич
  • Муравьев Александр Павлович
  • Кондратьев Сергей Дмитриевич
  • Синичук Данил Андреевич
  • Щербанов Петр Сергеевич
RU2427431C1
СПОСОБ ОБОГАЩЕНИЯ ПЕСКОВ 2000
  • Ковлеков И.И.
  • Саввин Е.Д.
  • Андреев В.С.
RU2168366C1
Устройство для проверки правильности монтажа мостовых и иных ферм 1937
  • Долженко А.А.
SU54821A1
ПРОМЫВОЧНЫЙ ПРИБОР ПГНВК 1994
  • Раздолькин Валентин Николаевич
  • Ястребов Константин Леонидович
  • Прокопьев Сергей Амперович
RU2080933C1
СПОСОБ ПРОМЫВКИ ЗОЛОТОНОСНЫХ ПЕСКОВ ПРИ ИСПОЛЬЗОВАНИИ ВОЛН РАЗЛИЧНОЙ ФИЗИЧЕСКОЙ ПРИРОДЫ 2004
  • Бахарев Сергей Алексеевич
RU2273522C1
Устройство для автоматического контроля прецизионных делителей 1984
  • Сушко Анатолий Федорович
  • Акимов Александр Анатольевич
  • Кононенко Ярослав Митрофанович
SU1228054A1
КАЗИМИРОВ М.П
и др
Устройство для выпрямления многофазного тока 1923
  • Ларионов А.Н.
SU50A1

RU 2 709 256 C1

Авторы

Мязин Виктор Петрович

Шумилова Лидия Владимировна

Петухова Ирина Ивановна

Антипин Сергей Алексеевич

Митин Анатолий Сергеевич

Даты

2019-12-17Публикация

2019-05-07Подача