Способ водородного подогрева питательной воды на АЭС Российский патент 2019 года по МПК G21D5/00 F22B1/26 F01K3/18 F02C3/30 

Описание патента на изобретение RU2709783C1

Изобретение относится к области энергетики и предназначено для использования на двухконтурных атомных электрических станциях (АЭС) с водо-охлаждаемыми реакторами.

Известен ряд парогазовых установок на базе АЭС (патент РФ на изобретение №2553725, МПК F01K 23/00, опубл. 20.06.2015; патент РФ на изобретение №2467179, МПК F01K 23/10, опубл. 20.11.2012; патент РФ на изобретение №2489574, МПК F01K 23/10, опубл. 10.08.2013; патент РФ на изобретение №2604208, МПК G21D 3/08, опубл. 10.12.2016). За счет глубокой утилизации уходящих газов газотурбинной установки в специальном газоводяном подогревателе осуществляется вытеснение отбора пара на подогреватели высокого давления паротурбинной установки АЭС. Вследствие этого повышается КПД паросилового цикла и осуществляется дополнительная выработка электроэнергии в определенных режимах работы АЭС.

Недостатком известных установок является использование газоводяного подогревателя, что подразумевает наличие потерь тепла с уходящими газами. Кроме этого, использование внешнего топлива в виде дорогостоящего природного газа снижает экономическую эффективность станции при выработке дополнительной электроэнергии.

Известна газопаровая электростанция (Europaische Patentschrift №0424660, Int. Cl. G21D 5/16, Veröffentlichungstag der Patentschrift 20.12.95). Выхлопные газы после газовой турбины направляются в пароперегреватели высокого и среднего давления, а также в подогреватель питательной воды. После расширения в паротурбинной установке сконденсировавшийся пар в виде конденсата перекачивается в подогреватель питательной воды, затем подогретая вода поступает в парогенератор АЭС. Вследствие этого повышается КПД паросилового цикла и осуществляется выработка дополнительной электроэнергии на АЭС.

Недостаток газопаровой электростанции заключается в использовании газоводяных подогревателей, что подразумевает наличие потерь тепла с уходящими газами. Это снижает эффективность газопаровой электростанции. Кроме этого, использование внешнего топлива в виде дорогостоящего природного газа снижает экономическую эффективность станции при выработке дополнительной электроэнергии.

Известно устройство повышения КПД и мощности траснпортабельной атомной электростанции (патент РФ на изобретение №2550362, МПК G21D 5/14, опубл. 10.05.2015). Уходящие газы после котла-пароперегревателя направляются в дополнительный подогреватель питательной воды, установленный до или после подогревателей высокого давления паротурбинной установки, для нагрева питательней воды, поступающей в парогенератор АЭС. После расширения в паротурбинной установке сконденсировавшийся пар в виде конденсата перекачивается через систему регенеративного подогрева в дополнительный подогреватель питательной воды, в результате подогретая питательная вода поступает в парогенератор АЭС. Вследствие этого повышается КПД паросилового цикла и осуществляется дополнительная выработка электроэнергии на АЭС за счет уменьшения промежуточных отборов пара из паротурбинной установки и увеличения температуры питательной воды перед парогенератором.

Недостаток известного устройства заключается в использовании газоводяного подогревателя, что подразумевает наличие потерь тепла с уходящими газами. Это снижает эффективность атомной электростанции. Кроме этого, использование внешнего топлива в виде дорогостоящего природного газа снижает экономическую эффективность станции при выработке дополнительной электроэнергии.

Известна парогазовая установка двухконтурной АЭС (см. патент РФ на изобретение №2547828, МПК G21D 3/00, опубл. 10.04.2015). Дополнительный подогрев питательной воды осуществляется в пароводяном подогревателе промежуточным паровым теплоносителем, генерируемым в утилизационном парогенераторе выхлопными газами газовой турбины. Повышение мощности и экономичности энергоблока двухконтурной АЭС достигается за счет того, что пар, генерируемый в утилизационном парогенераторе за счет теплоты отработавших газов газовой турбины, поступает в пароводяной подогреватель для повышения температуры питательной воды перед основным парогенератором. Повышение температуры питательной воды на входе в основной парогенератор позволяет повысить мощность энергоблока двухконтурной АЭС за счет увеличения расхода рабочего тела во втором циркуляционном контуре без изменения тепловой мощности реактора.

Недостатком известной установки является использование утилизационного парогенератора, что подразумевает наличие дорогостоящих теплообменных поверхностей и наличие потерь тепла с уходящими газами. Все это снижает эффективность установки. Кроме этого, использование внешнего топлива в виде дорогостоящего природного газа снижает экономическую эффективность станции при выработке дополнительной электроэнергии.

Известен способ отпуска тепла от двухконтурных атомных электрических станций с водоохлаждаемыми реакторами (варианты) (патент РФ на изобретение №2237936, МПК G21D 5/14, опубл. 10.10.2004). В способе отпуска тепла от двухконтурных атомных электрических станций с водоохлаждаемыми реакторами посредством нагрева сетевой воды в сетевых подогревателях паром из нерегулируемых отборов турбин, по первому варианту, одновременно с отбором пара на теплоснабжение производится подогрев питательной воды за счет форсирования реактора путем увеличения расхода пара в цилиндре низкого давления турбин, за счет частичной разгрузки подогревателей высокого давления, при байпасировании части питательной воды и подогреве ее в дополнительно устанавливаемом водяном подогревателе первого контура на холодной нитке теплоносителя. В способе отпуска тепла от двухконтурных атомных электрических станций с водоохлаждаемыми реакторами, по второму варианту, одновременно с отбором пара на теплоснабжение производится подогрев питательной воды за счет форсирования реактора путем увеличения расхода пара в цилиндре низкого давления турбин, за счет частичной разгрузки подогревателей высокого давления, при байпасировании части питательной воды и догреве ее в специально выделенной секции парогенератора, находящейся на трубопроводах теплоносителя первого контура, примыкающего к отводящему коллектору парогенератора.

Недостатком данного способа является возникновение переменных режимов работы реакторной установки при включении подогрева питательной воды за счет тепла первого контура.

Известна принципиальная схема двухконтурной АЭС с водородным перегревом пара (см., например, Малышенко С.П., Назарова О.В., Сарумов Ю.А. Некоторые термодинамические и технико-экономические аспекты применения водорода как энергоносителя в энергетике // Атомно-водородная энергетика и технология. М.: Энергоатомиздат. 1986. Вып. 7, с. 106-108). Водород и кислород вырабатываются в электролизёре, сжимаются компрессорами до давления, соответствующего давлению пара на входе в паровую турбину и поступают в соответствующие хранилища. За счёт высокотемпературных продуктов сгорания водорода в кислороде при стехиометрическом соотношении в камере сгорания водородного пароперегревателя, подмешиваемых в рабочее тело перед паровой турбиной, осуществляется перегрев водяного пара. Вследствие этого повышается КПД паросилового цикла и осуществляется дополнительная выработка электроэнергии.

Недостаток известной схемы заключается в постоянном принудительном водяном охлаждении, что снижает эффективность использования теплоты высокотемпературных продуктов сгорания водорода в кислороде, в связи со значительным количеством отводимой теплоты, необходимой для изменения фазового состояния балластировочной воды. При этом смешение перегреваемого пара с предварительно неохлаждёнными продуктами сгорания водорода и кислорода опасно детонацией продуктов высокотемпературной диссоциации, содержащихся в получаемом перегретом паре.

Известно электрогенерирующее устройство с высокотемпературной паровой турбиной, включающее паровой котел, высокотемпературный Н22 - пароперегреватель, теплоутилизационный котел, паровую турбину с электрогенератором и конденсатором, установку для получения водорода из природного газа методом конверсии, установку для производства кислорода методом разделения воздуха (см. патент РФ на полезную модель №2335642, МПК F01K 13/00, опубл. 27.05.2007 г.). В высокотемпературном Н22-пароперегревателе водяной пар перегревается за счет поступления и сжигания в нем водорода с кислородом в среде водяного пара без промежуточной теплообменной поверхности. Для полезного использования энергии уходящих газов из установки для конверсии природного газа в водород установлен утилизационный котел, выход пара из которого связан с промежуточным вводом пара в турбину с электрогенератором и (или) с системой охлаждения проточной части турбины. Устройство предназначено для производства электроэнергии с использованием высокотемпературной паровой турбины с комбинированным, в том числе водородным, топливом.

Недостатком данной полезной модели является невозможность её использования в случае, когда получаемый водяной пар имеет температуру меньше, чем температура самовоспламенения водорода в смеси с кислородом, а также когда расход пара снижен или полностью отсутствует, поскольку не обеспечивается понижение (регулирование) температуры водородно-кислородного пара. Смешение пара с продуктами сгорания водорода и кислорода опасно детонацией продуктов высокотемпературной диссоциации, содержащихся в получаемом перегретом паре.

Известен способ повышения КПД и мощности двухконтурной атомной станции (см. патент РФ на изобретение №2335641, МПК F01K 3/18; G21D 5/16, опубл. 10.10.2013 г.). Известный способ предназначен для повышения КПД и мощности двухконтурной атомной станции путем перегрева пара после реакторного парогенератора в котле-пароперегревателе с независимым источником тепловой энергии. Известный способ заключается в том, что в котле-пароперегревателе температуру пара повышают до 800-850°, при которой при расширении пара в паротурбинной установке из последней ступени цилиндра низкого давления получают насыщенный пар со степенью сухости не менее 99% или слабо перегретый пар с температурой перегрева не более 5°, тем самым обеспечивается повышение КПД паротурбинной установки и мощности атомной станции.

Недостатком известного способа (первый вариант) является то, что в данном варианте в качестве окислителя используется воздух, что не может обеспечить эффективное сжигание водорода и приводит к значительным выбросам окислов азота в атмосферу. Недостатком известного способа (второй вариант) является то, что при сжигании водорода в кислородной среде с получением высокотемпературного пара и смешение перегреваемого пара с продуктами сгорания при температуре получаемого перегретого пара 800-850° опасно детонацией продуктов высокотемпературной диссоциации, содержащихся в получаемом перегретом паре.

Известна гибридная АЭС с дополнительной высокотемпературной паровой турбиной (см. патент РФ на изобретение №2661341, МПК C21D 5/14, опубл. 16.07.2018 г.). Изобретение относится к области атомной теплотехники и призвано повысить эффективность выработки электроэнергии на базе атомных парогенераторов при одновременном увеличении диапазона регулирования вырабатываемой мощности без нарушения режима работы реактора АЭС. Для этого используется дополнительный высокотемпературный паротурбинный блок с котлом-пароперегревателем, использующим органическое или водородное топливо, для перегрева части пара, поступающего из основного парогенератора АЭС. Получаемый перегретый пар направляется в дополнительную паротурбинную установку для выработки дополнительной мощности, при этом основная паротурбинная установка разгружается.

Недостатком известного изобретения является использование котла-пароперегревателя, что подразумевает наличие дорогостоящих теплообменных поверхностей, а также потери тепла с уходящими газами. Все это снижает эффективность установки.

Известен способ водородного перегрева пара на АЭС (см. патент РФ на изобретение №2661231, МПК F01K 3/18; G21D 5/16, опубл. 13.07.2018 г.). Известный способ позволяет повысить эффективность и безопасность сжигания водорода с кислородом посредством замкнутой системы сжигания для выработки дополнительной электроэнергии на АЭС за счет повышения параметров острого пара или пара после промежуточного перегрева. Для этого осуществляется подача кислорода в котел-пароперегреватель через смесительное устройство осуществляется с определенным избытком для снижения температуры продуктов сгорания и исключения недожога, при этом продукты сгорания после котла-пароперегревателя направляются в охладитель-конденсатор для отделения непрореагировавшего избытка кислорода от водяного пара путем его конденсации с последующей подачей непрореагировавшего избытка кислорода посредством компрессора обратно в смесительное устройство котла-пароперегревателя для сжигания водородного топлива и перегрева пара после основного реакторного парогенератора для повышения мощности и эффективности АЭС.

Недостатком известного изобретения является использование котла-пароперегревателя, что подразумевает наличие дорогостоящих теплообменных поверхностей, а также высокие температурные напряжения при подаче небольшого избытка окислителя. Кроме того, для сжигания водорода с избытком окислителя необходимо вырабатывать избыточное количество кислорода, что потребует дополнительных затрат. Все это снижает эффективность способа.

Наиболее близким аналогом является принципиальная схема водородного перегрева острого пара на АЭС (см. Aminov R.Z., Egorov A.N. Evaluation of the efficiency of combining wet-steam NPPs with a closed hydrogen cycle // IOP Conf. Series: Journal of Physics: Conf. Series. 2018. Vol. 1111. 012022. doi:10.1088/1742-6596/1111/1/012022). При использовании данной схемы обеспечивается безопасное и эффективное сжигание водорода в кислородной среде посредством замкнутой системы сжигания. За счет использования тракта охлаждения продуктов сгорания остаточное содержание водорода в продуктах сгорания пренебрежимо мало. После конденсации пара непрореагировавший избыток кислорода возвращаются в камеру сгорания водород-кислородного парогенератора. Повышение эффективности и мощности АЭС осуществляется не только за счет повышения температуры пара в цикле паротурбинной установки, но и за счет либо вытеснения отборов пара системе регенеративного подогрева, либо за счет увеличения расхода свежего пара в основном парогенераторе путем повышения температуры питательной воды выше ее номинального значения. При этом охлаждение продуктов сгорания осуществляется через поверхность теплообмена без смешения рабочих тел.

Недостатком известной схемы является то, что для увеличения температуры острого пара используется малоэффективный поверхностный паро-паровой перегреватель, что подразумевает наличие дорогостоящих теплообменных поверхностей и постоянного температурного напора между греющей и нагреваемой средой, что связано с бóльшими затратами тепла на перегрев. Кроме того, неэффективно используется скрытая теплота парообразования при конденсации продуктов сгорания водорода в кислородной среде за счет нагрева основного конденсата из паротурбинной установки. При этом в некоторых режимах требуется подача избытка окислителя, который необходимо дополнительно вырабатывать. Кроме того, дополнительно генерируемый пар направляется в основную паротурбинную установку, что приводит к возникновению переменных режимов в ее работе. Все это приводит к снижению эффективности и надежности использования энергии водородного топлива.

Задачей настоящего изобретения является повышение эффективности и надежности использования водородного топлива для повышения мощности двухконтурных атомных электрических станций.

Техническим результатом, достигаемым при использовании настоящего изобретения, является повышение эффективности и надежности использования водородного топлива при его сжигании с кислородом при дополнительном подогреве питательной воды после подогревателей высокого давления и увеличения за счет этого расхода рабочего тела через парогенератор для выработки мощности в дополнительной паротурбинной установке без изменения режима работы реакторной и основной паротурбинной установки. При этом предотвращается попадание несгоревшего водорода во второй контур АЭС.

Указанный технический результат достигается тем, что на АЭС, содержащей водород-кислородную камеру сгорания, тракт охлаждения продуктов сгорания, подогреватели высокого давления питательной воды, питательный насос, компрессор, бак-аккумулятор, согласно изобретения, смесь дополнительно генерируемого в парогенераторе пара, полученного за счет подогрева питательной воды перед парогенератором, и продуктов сгорания водорода в кислородной среде после тракта охлаждения направляется в дополнительную паровую турбоустановку для выработки мощности, при этом сконденсированный в конденсаторе дополнительно генерируемый пар направляется в регенеративный цикл основной паротурбинной установки, а сконденсированный водяной пар из продуктов сгорания направляются в бак-аккумулятор, при этом неконденсирующиеся из продуктов сгорания газы через систему спецгазоочистки выбрасываются в атмосферу.

Сущность изобретения заключается в повышении эффективности и надежности использования водородного топлива для повышения мощности АЭС за счет увеличения расхода рабочего тела через парогенератор (ПГ) вследствие дополнительного подогрева питательной воды после подогревателей высокого давления выше номинальной температуры за счет тепла продуктов сгорания водорода в кислороде, но не выше температуры кипения при данном давлении перед подачей в ПГ. Это достигается за счет того, что охлажденные продукты сгорания водорода в кислородной среде в виде водяного пара смешиваются с дополнительно генерируемым в парогенераторе паром и поступают в дополнительную паротурбинную установку для выработки дополнительной мощности. При этом используются водород и кислород, полученные методом электролиза воды во внепиковые часы графика электрической нагрузки энергосистемы.

Изобретение иллюстрируется чертежом (фиг. 1), где показана принципиальная технологическая схема повышения мощности двухконтурной АЭС за счет подогрева питательной воды. Позиции на чертеже обозначают следующее: 1 - водород-кислородная камера сгорания; 2 - тракт охлаждения продуктов сгорания; 3 - парораспределительное устройство; 4 - стопорно-регулирующий клапан; 5 - смесительное устройство; 6 - дополнительная паротурбинная установка; 7 - электрогенератор; 8 - конденсатор; 9 - задвижка; 10 - питательный насос; 11 - подогреватели высокого давления; ПГ - парогенератор; ПТУ - паротурбинная установка; СГО - система спецгазоочистки; БА - бак-аккумулятор; СРП - система регенеративного подогрева воды.

Работа осуществляется следующим способом. Посредством питательного насоса 10 питательная вода после подогревателей высокого давления 11 поступает для подогрева в тракт охлаждения продуктов сгорания 2, где подогревается до температуры выше номинальной, но не выше температуры кипения при данном давлении перед подачей в ПГ АЭС за счет охлаждения продуктов, образующихся при сжигании водорода в кислородной среде посредством водород-кислородной камеры сгорания 1. Дополнительное количество пара, генерируемое в ПГ за счет подогрева питательной воды, посредством стопорно-регулирующего клапана 4 через парораспределительное устройство 3 поступает в смесительное устройство 5, где смешивается с продуктами сгорания водорода в кислородной среде, поступающими из тракта охлаждения продуктов сгорания 2, и направляется в дополнительную паротурбинную установку 6 для выработки мощности в электрогенераторе 7. После срабатывания в дополнительной ПТУ 5 сконденсированное в конденсаторе 8 дополнительное количество пара, генерируемое в ПГ за счет подогрева питательной воды, направляется в СРП основной ПТУ. При этом посредством задвижки 9 сконденсированные в конденсаторе 8 продукты сгорания водорода в кислородной среде направляются в бак-аккумулятор. Неконденсирующиеся из продуктов сгорания газы через СГО выбрасываются в атмосферу.

Отличительным признаком способа водородного подогрева питательной воды на АЭС, является повышение эффективности и надежности использования водородного топлива при его сжигании в кислородной среде за счет более эффективного использования теплоты образующихся продуктов сгорания и выработке мощности в дополнительной паротурбинной установке без изменения режима работы реакторной и основной паротурбинной установки. При этом предотвращается попадание несгоревшего водорода во второй контур АЭС.

Похожие патенты RU2709783C1

название год авторы номер документа
Способ повышения мощности двухконтурной АЭС за счет комбинирования с водородным циклом 2019
  • Аминов Рашид Зарифович
  • Егоров Александр Николаевич
  • Байрамов Артем Николаевич
RU2707182C1
СПОСОБ ВОДОРОДНОГО ПЕРЕГРЕВА ПАРА НА АЭС 2017
  • Аминов Рашид Зарифович
  • Егоров Александр Николаевич
RU2661231C1
СИСТЕМА БЕЗОПАСНОГО ИСПОЛЬЗОВАНИЯ ВОДОРОДА ПРИ ПОВЫШЕНИИ МОЩНОСТИ ДВУХКОНТУРНОЙ АЭС ВЫШЕ НОМИНАЛЬНОЙ 2019
  • Байрамов Артём Николаевич
  • Аминов Рашид Зарифович
RU2736603C1
ТУРБИННАЯ УСТАНОВКА АТОМНОЙ ЭЛЕКТРОСТАНЦИИ (ВАРИАНТЫ) 2011
  • Аминов Рашид Зарифович
  • Байрамов Артем Николаевич
  • Егоров Александр Николаевич
RU2459293C1
СПОСОБ РАСХОЛАЖИВАНИЯ ВОДООХЛАЖДАЕМОГО РЕАКТОРА ПРИ ПОЛНОМ ОБЕСТОЧИВАНИИ АЭС 2012
  • Аминов Рашид Зарифович
  • Егоров Александр Николаевич
  • Юрин Валерий Евгеньевич
RU2499307C1
СИСТЕМА СЖИГАНИЯ ВОДОРОДА ДЛЯ ПАРОВОДОРОДНОГО ПЕРЕГРЕВА СВЕЖЕГО ПАРА В ЦИКЛЕ АТОМНОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2009
  • Аминов Рашид Зарифович
  • Байрамов Артем Николаевич
RU2427048C2
СИСТЕМА СЖИГАНИЯ ВОДОРОДА В ЦИКЛЕ АЭС С РЕГУЛИРОВАНИЕМ ТЕМПЕРАТУРЫ ВОДОРОД-КИСЛОРОДНОГО ПАРА 2012
  • Аминов Рашид Зарифович
  • Байрамов Артем Николаевич
  • Юрин Валерий Евгеньевич
RU2488903C1
СПОСОБ ПОВЫШЕНИЯ БЕЗОПАСНОСТИ И ТЕХНИКО-ЭКОНОМИЧЕСКОЙ ЭФФЕКТИВНОСТИ РАБОТЫ АЭС В УСЛОВИЯХ НЕРАВНОМЕРНОГО ЭНЕРГОПОТРЕБЛЕНИЯ НА ОСНОВЕ ВОДОРОДНО-ТЕПЛОВОГО АККУМУЛИРОВАНИЯ 2021
  • Егоров Александр Николаевич
  • Юрин Валерий Евгеньевич
RU2759559C1
СПОСОБ ПОВЫШЕНИЯ МАНЕВРЕННОСТИ И БЕЗОПАСНОСТИ АЭС НА ОСНОВЕ ТЕПЛОВОГО И ХИМИЧЕСКОГО АККУМУЛИРОВАНИЯ 2017
  • Юрин Валерий Евгеньевич
  • Егоров Александр Николаевич
RU2640409C1
Способ повышения эффективности аварийного резервирования собственных нужд двухконтурной АЭС 2023
  • Аношин Даниил Михайлович
  • Аминов Рашид Зарифович
RU2812839C1

Иллюстрации к изобретению RU 2 709 783 C1

Реферат патента 2019 года Способ водородного подогрева питательной воды на АЭС

Изобретение относится к области энергетики и предназначено для использования на двухконтурных АЭС с водоохлаждаемыми реакторами. Способ водородного подогрева питательной воды на АЭС, содержащий водород-кислородную камеру сгорания, тракт охлаждения продуктов сгорания, подогреватели высокого давления питательной воды, питательный насос, компрессор, бак-аккумулятор. Смесь дополнительно генерируемого в парогенераторе пара, полученного за счет подогрева питательной воды перед парогенератором, и продуктов сгорания водорода в кислородной среде после тракта охлаждения продуктов сгорания направляется в дополнительную паровую турбоустановку для выработки мощности, при этом сконденсированный в конденсаторе дополнительно генерируемый пар направляется в регенеративный цикл основной паротурбинной установки, а сконденсированный водяной пар из продуктов сгорания направляется в бак-аккумулятор. При этом неконденсирующиеся из продуктов сгорания газы через систему спецгазоочистки выбрасываются в атмосферу. Изобретение позволяет эффективно и надежно использовать водородное топливо. 1 ил.

Формула изобретения RU 2 709 783 C1

Способ водородного подогрева питательной воды на АЭС, содержащий водород-кислородную камеру сгорания, тракт охлаждения продуктов сгорания, подогреватели высокого давления питательной воды, питательный насос, компрессор, бак-аккумулятор, отличающийся тем, что смесь дополнительно генерируемого в парогенераторе пара, полученного за счет подогрева питательной воды перед парогенератором, и продуктов сгорания водорода в кислородной среде после тракта охлаждения направляется в дополнительную паровую турбоустановку для выработки мощности, при этом сконденсированный в конденсаторе дополнительно генерируемый пар направляется в регенеративный цикл основной паротурбинной установки, а сконденсированный водяной пар из продуктов сгорания направляется в бак-аккумулятор, при этом неконденсирующиеся из продуктов сгорания газы через систему спецгазоочистки выбрасываются в атмосферу.

Документы, цитированные в отчете о поиске Патент 2019 года RU2709783C1

СИСТЕМА СЖИГАНИЯ ВОДОРОДА ДЛЯ ПАРОВОДОРОДНОГО ПЕРЕГРЕВА СВЕЖЕГО ПАРА В ЦИКЛЕ АТОМНОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ 2009
  • Аминов Рашид Зарифович
  • Байрамов Артем Николаевич
RU2427048C2
СПОСОБ ВОДОРОДНОГО ПЕРЕГРЕВА ПАРА НА АЭС 2017
  • Аминов Рашид Зарифович
  • Егоров Александр Николаевич
RU2661231C1
ГИБРИДНАЯ АЭС С ДОПОЛНИТЕЛЬНОЙ ВЫСОКОТЕМПЕРАТУРНОЙ ПАРОВОЙ ТУРБИНОЙ 2017
  • Зарянкин Аркадий Ефимович
RU2661341C1
US 5457721 A1, 10.10.1995.

RU 2 709 783 C1

Авторы

Аминов Рашид Зарифович

Егоров Александр Николаевич

Даты

2019-12-20Публикация

2019-06-07Подача