Изобретение относится к электронике и электротехнике в области термообработки металлов с целью их вакуумного плавления, испарения, наплавления, сварки, резки, для аддитивных технологий, и может быть использовано в автоматизированных технологических процессах для авиационно-космического, судо- и автомобилестроения, железнодорожного транспорта, двигателе- и машиностроения.
Известные конструкции электронно-лучевых пушек (ЭЛП) имеют ресурс эксплуатации до 50 часов. Между тем, использование ЭЛП в технологических установках, как правило, сопровождается вакуумированием рабочей камеры и самой ЭЛП. Это длительный подготовительный процесс, который существенно расходует ресурс ЭЛП. Таким образом, ресурс ЭЛП является неприемлемо низким при высокой цене самой ЭЛП и является серьезным ограничением для реализации современных технологий термообработки металлов. Невозможность многократного повторения технологических процессов без изменения условий обеспечения является причиной разброса параметров и качества технологической продукции. В связи с этим ресурс эксплуатации ЭЛП наряду с ее функциональными параметрами является параметром, определяющим качество ЭЛП в целом. Основным элементом, определяющим надежность и ресурс ЭЛП, является катод. Причиной его износа является поток встречных положительных ионов, имеющих место в корпусе ЭЛП из-за недостаточного вакуумирования, а также появляющихся в технологическом процессе термообработки металлов и интенсивного нагрева элементов конструкции ЭЛП. Материал, конструкция, условия и режимы работы катода определяют ресурс ЭЛП.
Изобретение RU 2314591 C1 10.01.2008 предлагает способы, компенсирующие деструктивные изменения катодного каскада в процессе его разрушения и повышающие ресурс эксплуатации и надежность, однако они не касаются явных средств борьбы с разрушительным потоком обратных ионов.
Наиболее близким к настоящему изобретению является изобретения RU 2314593 С2 10.01.2007. В зависимости от назначения ЭЛП катод выполняется с плоской эмитирующей поверхностью, либо в нем создается углубление для локализации приема бомбардирующих его положительных ионов. Недостатком такого способа является отсутствие четкой границы между эмитирующими поверхностями катода и областью поглощения ионов. Это ведет к износу катода и изменению его эмиссионных способностей в процессе эксплуатации. В результате даже одна партия изделий, полученных в ходе технологического процесса, может иметь значительный разброс параметров.
Еще один недостаток, снижающий надежность и ресурс эксплуатации ЭЛП, связан с косвенным нагревателем катода, выполненным из вольфрамовой проволоки. Разность потенциалов между катодом и нагревателем около 2 кВ. В изолированной камере нагревателя при температуре более 2300°С возникает локальный поток положительных ионов, обусловленный наличием остаточных газов и газовыделений, сопровождающих разрушение катода в процессе его эксплуатации. Спираль нагревателя не содержит средств защиты от бомбардировки ионами, которая пропорциональна высокому напряжению между катодом и нагревателем.
Задачей, на решение которой направлено предлагаемое изобретение, является разработка ЭЛП с существенно повышенным ресурсом эксплуатации за счет конструктивных особенностей катода и его нагревателя.
Поставленная задача решается тем, что электронно-лучевая пушка с повышенным ресурсом эксплуатации содержит катодный каскад в корпусе с собирающей линзой, анод и лучевод с фокусирующими и отклоняющими линзами, тепловые изоляторы, токоподводы и систему водоохлаждения, причем катод имеет разделение эмитирующей поверхности и ионо-поглотительного углубления за счет цилиндрической формы углубления, нагреватель катода выполнен в виде нагревательной спирали, обвитой вокруг катода, и соединенной с катодом последовательно, сечение катода со стороны высоковольтного питания заужено.
На фиг. 1 показан общий вид электронно-лучевой пушки.
На фиг. 2 показан катодный каскад.
ЭЛП предназначена для создания электронного пучка и управления им. Основными модулями ЭЛП являются высоковольтный ввод 1, катодный каскад 2, анод 3 и лучевод 4.
В корпус высоковольтного ввода 1, внутренняя поверхность которого выполнена из электроизоляционного материала 5, заключен опорный изолятор. Опорный изолятор конструктивно объединяет в себе изолятор 6 и проходящий через него к катодному узлу 2 коаксиальный водоохлаждаемый токоподвод 7.
С внешней стороны коаксиального водоохлаждаемого токоподвода 7 (со стороны атмосферы) на нем установлены клеммы 8 для подсоединения электрических кабелей высокого напряжения и штуцеры 9 для подачи охлаждающей воды. Охлаждение коаксиального водоохлаждаемого токоподвода 7 устроено по принципу трубки Фильда. С внутренней стороны (со стороны вакуума), к коаксиальному водоохлаждаемому токоподводу 7, крепится тепловой экран 10, выполненный из магнитомягкой стали предохраняющий изолятор 6 от радиационного излучения катодного узла 2.
Катодный каскад 2 (фиг. 2) установлен в корпусе 11 с водоохлаждением 12. Катод крепится к внутренней части коаксиального водоохлаждаемого токоподвода 7 опорного изолятора. В тепловом экране 10 закреплен электрод 13, проходящий через тепловую изоляцию 14 и подающий питание на вольфрамовую спираль 15 нагрева катода 16.
Нагрев катода осуществляется радиационным способом вольфрамовой спиралью 15. Катод и вольфрамовая спираль окружены многослойной экранной тепловой изоляцией 14.
Корпус 11 катодного узла, выполненный из немагнитной нержавеющей стали с водяной рубашкой охлаждения, установлен на анод 3. В корпусе 11 имеется патрубок дифференциальной откачки 17 катодного узла 2.
С внешней стороны корпус 11 катодного узла 2 охвачен катушкой собирающей электромагнитной линзы 18, а внешний кожух 19, изготовленный из магнитомягкой стали, является обратным магнитопроводом собирающей линзы и одновременно исполняет роль конструктивного элемента, через который производится вакуумное уплотнение изолятора 6 с корпусом 11 и корпуса с анодом 3.
Анод 3 установлен на лучевод 4, который выполнен из немагнитной нержавеющей стали с водоохлаждением 20. На наружной поверхности лучевода базируются две фокусирующие 21 и отклоняющая 22 электромагнитные линзы.
Анод 3 выполнен из магнитомягкой стали и имеет водяное охлаждение 23. Со стороны, обращенной к катоду, он имеет форму конуса с углом Пирса. С обратной стороны внутренняя часть анода 3 выполнена тоже конической для обеспечения свободного прохода расширяющегося электронного пучка. Анод 3 является полюсом как электростатической, так и магнитной линз. Электростатическое поле образуется за счет разности потенциалов между катодом и анодом. Благодаря конической поверхности с углом Пирса градиент электростатического поля постоянен, поэтому эмиттанс получаемого электронного пучка минимальный. Магнитное поле возбуждается катушкой собирающей линзы 18 и замыкается по контуру анод 3 - внешний кожух (обратный магнитопровод) 19 - тепловой экран (второй полюс магнитной линзы) 10 - анод.
Водоохлаждение ЭЛП разделено на два контура. Первый контур со штуцерами 9 охлаждает коаксиальный водоохлаждаемый токоподвод 7, находящийся под высоким напряжением, а второй - лучевод 4 (водоохлаждение 20), анод 3 (водоохлаждение 23) и корпус 11 катодного узла 1 (водоохлаждение 12), находящиеся под потенциалом земли. Лучевод 4, анод 3 и корпус катода 11 по охлаждению соединены последовательно.
Электронно-лучевая пушка работает следующим образом.
Катод 16 нагревается до температуры, при которой ток эмиссии с его поверхности 24, обращенной к аноду 3, достигает необходимой величины. Электроны, эмитированные с поверхности, ускоряются потенциалом катода и фокусируются в отверстие анода как электростатическим, так и магнитным полями. Конфигурация полей такова, что эмиттанс пучка минимален. Непосредственно за отверстием анода пучок проходит кроссовер 25 и начинает расширяться. Первая фокусирующая линза 21 преобразует расширяющийся пучок в параллельный, а при помощи второй устанавливается необходимый по технологическому процессу диаметр пучка на поверхности изделия. При такой фокусировке искривление портрета пучка на фазовой плоскости и, соответственно, аберрации, вносимые в пучок фокусирующей системой минимальны. Отклоняющая линза 22 состоит из двух независимых блоков катушек, создающих взаимно перпендикулярные магнитные поля 26, перпендикулярные оси пучка. Величина магнитного поля, создаваемого каждым блоком катушек в апертуре линзы постоянна. Катушки базируются на круговом магнитопроводе и имеют разное количество витков. Количество витков в катушках аппроксимируют синусоидальный закон распределения плотности тока по углу для создания магнитного поля по оси Х и косинусоидальный вдоль оси Y.
Ресурс эксплуатации ЭЛП определяется ресурсом эксплуатации катода. Износ катода определятся двумя процессами:
- распыление металла бомбардировкой потоком обратных ионов, которые исходят из пучковой плазмы, ускоряются до энергии пропорциональной потенциалу катода и попадают на его поверхность;
- испарение металла с нагретых до высокой температуры поверхностей деталей катода.
Детали, определяющие ресурс эксплуатации катода, это нить накала и активная поверхность катода, участвующая в получении тока эмиссии.
Нить накала выполнена из вольфрама. Диаметр и длина нити определяются тепловым расчетом и приняты такими, что при температуре поверхности катода, с которой идет эмиссия электронов, 2200°С температура поверхности нити не превышает 2300°С.
Распыление нити бомбардировкой потоком обратных ионов исключено, так как она надежно защищена тепловой защитой и самим катодом.
Время, за которое диаметр нити уменьшится на 0,1 мм (а радиус, - на 0,005 см) составит
где ΔR уменьшение радиуса нити; F=4,28-10-9 г/см2с - скорость испарения вольфрама при температуре 2327°С; γ=19,3 г/см3 - удельный вес вольфрама.
Катод выполнен из ниобия. Рабочая поверхность катода, с которой идет эмиссия электронов, нагревается до температуры 2200°С.
Распыление рабочей поверхности бомбардировкой потоком обратных ионов не происходит, так как ионы фокусируются собирающей линзой, проходят через центральное отверстие в катоде и попадают на его дно. Поверхность дна отверстия в эмиссии электронов для получения пучка не участвует. Конструкция катода такова, что его распыление на дне центрального отверстия на ресурс эксплуатации катода в целом не сказывается.
Время, за которое длина катода уменьшится на 4 мм (на 0,4 см) составит
где ΔL уменьшение длины катода; V=1,87⋅10-7 г/см2с - скорость испарения ниобия при температуре 2227°С; γ=8,57 г/см3 - удельный вес ниобия.
На основании приведенных расчетов и опыта эксплуатации ресурс эксплуатации катода и, соответственно, ЭЛП определен не менее 500 час.
Отличие настоящего изобретения в том, что эмитирующая поверхность 24 катода 16 и ионо-поглотительное углубление 27 радикально разделены за счет формы углубления: не конусообразной, а цилиндрической. Облако эмитированных электронов, скопившихся в ионо-поглотительном углублении, создает потенциальный барьер для дальнейшей эмиссии электронов со дна ионо-поглотительного углубления, и в то же время является четкой мишенью для обратных ионов, устремленных от анода к катоду. В результате эмитирующая поверхность катода оказывается надежно защищенной от разрушительной бомбардировки обратными ионами.
Еще одно отличие заключается в конструкции нагревателя катода, который выполняют в виде нагревательной спирали, обвитой вокруг катода, и соединенной с катодом последовательно. Сечение катода со стороны высоковольтного питания зауживают для направленного теплового воздействия на эмитирующую поверхность катода. Такая конструкция исключает наличие высоковольтного напряжения между нагревателем и катодом, а, следовательно, потоки обратных ионов, бомбардирующих обмотку нагревателя катода, снижающих ее ресурс эксплуатации и надежность.
Технический результат настоящего изобретения, заключается в том, что ресурс эксплуатации ЭЛП увеличивается по сравнению со среднестатистическим ресурсом аналогичных ЭЛП до 10 раз. Это радикально изменяет эксплуатационные возможности ЭЛП в технологических процессах термообработки металлов в вакууме, поскольку становится возможным непрерывное многократное повторение технологического процесса. Вся партия выходной продукции, выпущенная в одинаковых условиях и с одинаковыми режимами, имеет минимальные разбросы параметров.
Описанный способ увеличения ресурса эксплуатации и надежности ЭЛП аппаратно и программно реализован и испытан с положительным результатом в ПАО «Электромеханика», г. Ржева, Тверской обл. РФ.
название | год | авторы | номер документа |
---|---|---|---|
Газоразрядная электронно-лучевая пушка | 2021 |
|
RU2777038C1 |
ЭЛЕКТРОННО-ЛУЧЕВАЯ ПУШКА ДЛЯ НАГРЕВА МАТЕРИАЛОВ В ВАКУУМЕ | 2005 |
|
RU2314593C2 |
ГАЗОРАЗРЯДНАЯ ЭЛЕКТРОННАЯ ПУШКА | 2006 |
|
RU2323502C1 |
АКСИАЛЬНАЯ ЭЛЕКТРОННАЯ ПУШКА | 2011 |
|
RU2479884C2 |
КАТОДНО-ПОДОГРЕВАТЕЛЬНЫЙ УЗЕЛ ДЛЯ ЭЛЕКТРОННО-ЛУЧЕВОЙ ПУШКИ | 2020 |
|
RU2756845C1 |
ЭЛЕКТРОННАЯ ПУШКА С ЛИНЕЙНЫМ ТЕРМОКАТОДОМ ДЛЯ ЭЛЕКТРОННО-ЛУЧЕВОГО НАГРЕВА | 2001 |
|
RU2238602C1 |
ГАЗОРАЗРЯДНАЯ ЭЛЕКТРОННАЯ ПУШКА | 2009 |
|
RU2400861C1 |
ГАЗОРАЗРЯДНАЯ ЭЛЕКТРОННАЯ ПУШКА, УПРАВЛЯЕМАЯ ИСТОЧНИКОМ ИОНОВ С ЗАМКНУТЫМ ДРЕЙФОМ ЭЛЕКТРОНОВ | 2022 |
|
RU2792344C1 |
АКСИАЛЬНАЯ ЭЛЕКТРОННАЯ ПУШКА | 2017 |
|
RU2699765C1 |
ЭЛЕКТРОННАЯ ПУШКА | 2005 |
|
RU2289867C1 |
Изобретение относится к электронике и электротехнике в области термообработки металлов с целью их вакуумного плавления, испарения, наплавления, сварки, резки, для аддитивных технологий. Электронно-лучевая пушка содержит катодный каскад в корпусе с собирающей линзой, анод и лучевод с фокусирующими и отклоняющими линзами, тепловые изоляторы, токоподводы и систему водоохлаждения. Катод имеет разделение эмитирующей поверхности и ионопоглотительного углубления за счет цилиндрической формы углубления. Нагреватель катода выполнен в виде нагревательной спирали, обвитой вокруг катода и соединенной с катодом последовательно. Сечение катода со стороны высоковольтного питания заужено. Технический результат - увеличение ресурса эксплуатации ЭЛП, возможность непрерывного многократного повторения технологического процесса. Вся партия выходной продукции, выпущенная в одинаковых условиях и с одинаковыми режимами, имеет минимальные разбросы параметров. 2 ил.
Электронно-лучевая пушка, содержащая катодный каскад в корпусе с собирающей линзой, анод и лучевод с фокусирующими и отклоняющими линзами, тепловые изоляторы, токоподводы и систему водоохлаждения, отличающаяся тем, что катод имеет разделение эмитирующей поверхности и ионопоглотительного углубления за счет цилиндрической формы углубления, нагреватель катода выполнен в виде нагревательной спирали, обвитой вокруг катода и соединенной с катодом последовательно, сечение катода со стороны высоковольтного питания заужено.
ЭЛЕКТРОННО-ЛУЧЕВАЯ ПУШКА ДЛЯ НАГРЕВА МАТЕРИАЛОВ В ВАКУУМЕ | 2005 |
|
RU2314593C2 |
КАТОДНЫЙ УЗЕЛ ЭЛЕКТРОННО-ЛУЧЕВОЙ ПУШКИ, ПОДОГРЕВАТЕЛЬ КАТОДА И ДЕРЖАТЕЛЬ ПОДОГРЕВАТЕЛЯ | 2006 |
|
RU2314591C1 |
US 3652821 A, 28.03.1972 | |||
US 4061871 A, 06.12.1977 | |||
WO 2012055458 A1, 03.05.2012. |
Авторы
Даты
2019-12-20—Публикация
2018-07-09—Подача