СПОСОБ СИГНАЛИЗАЦИИ НАЛИЧИЯ ГОРЕНИЯ В ФОРСАЖНОЙ КАМЕРЕ ВОЗДУШНО-РЕАКТИВНОГО ДВИГАТЕЛЯ Российский патент 2020 года по МПК G01J5/08 F23N5/08 

Описание патента на изобретение RU2711186C1

Изобретение относится к измерительной технике и теплотехнике, и может быть использовано, например, для сигнализации наличия горения в форсажной камере сгорания (ФКС) воздушно-реактивного двигателя (ВРД).

При создании и эксплуатации камер сгорания (КС) авиационных двигателей необходимо контролировать наличие горения в них для обеспечения безопасности их работы с системами автоматического управления розжига. Широко применяемые электро-ионизационные датчики, располагаемые в зоне стабилизаторов горения, принципиально обладают локальностью диагностирования зон горения вокруг электрода чувствительного зонда.

В современных кольцевых КС, которые могут работать на режимах с обедненными горючими топливо-воздушными смесями, пламя может дрейфовать в рабочей зоне стабилизаторов и выйти за пределы действия зонда, что приводит к неустойчивости работы автоматики систем топливоподачи и розжига КС и ложным сигналам о погасании КС.

Попытки применить оптические методы в качестве сигнализатора горения в КС предпринимались давно. Из SU 523554, 1973, известен дифференциальный способ регистрации теплового излучения продуктов сгорания (без ограничения спектрального диапазона), до и за стабилизаторами горения. Однако при современных высокоэнтальпийных режимах работы основных КС и применении малых режимов в форсажных КС, отличия регистрируемых интегральных излучений незначительны и надежность этого способа недостаточна.

Известен детектор пламени по патенту ЕР 0157644, 1985, в котором используется фотоприемник на основе гетеростуктуры GaAsP с чувствительностью к ультрафиолетовому излучению, чтобы уменьшить влияние инфракрасного излучения.

Такой детектор хорошо воспринимает указанное выше излучение, характеризующее зону горения. Однако специфика работы ФКС в полете предполагает возможность попадания лучей солнца в реактивное сопло. При этом датчик пламени выдаст ложный сигнал о наличии горения в КС.

Наиболее близким аналогом предложенного изобретения является известный из US 4029966, 1977, способ обнаружения пламени в ФКС двигателя, включающий регистрацию излучения из зоны горения, обработку полученного сигнала и вынесение решения о наличии горения. Для регистрации излучения используется датчик на основе газоразрядного фотоэлемента, спектр чувствительности которого лежит в интервале 180…300 нм. Однако процессы, характеризующие горение, сопровождаются локальным излучением радикалов ОН (308-320 нм), СН (431-438 нм), С2 (467-470 нм; 513-516 нм) при хемилюминесценции в химических реакциях окисления углеводородного горючего. Поэтому чувствительность устройства для обнаружения горения в известном способе низкая. Также недостатком известного способа является низкая информационная надежность, так как в полете самолета возможно попадание лучей солнца в реактивное сопло, при этом датчик пламени может выдать ложный сигнал о наличии горения в КС.

Целью предлагаемого изобретения является повышение надежности контроля за процессом запуска ФКС.

Указанная цель достигается тем, что в известном способе сигнализации наличия горения в форсажной камере сгорания воздушно-реактивного двигателя, включающем регистрацию излучения из зоны горения, обработку полученного сигнала и сигнализацию о наличии горения, согласно предложению, полученный при регистрации излучения в процессе эксплуатации двигателя общий электрический сигнал разделяют на широкополосный, в интервале частот 0-5000 Гц и узкополосный, при этом узкополосный интервал частот выбирают исходя из акустических и геометрических характеристик форсажной камеры сгорания, выделяют в этих интервалах средние значения амплитуд колебаний сигнала и сравнивают их с полученными до начала эксплуатации двигателя реперными значениями для каждого интервала, в случае одновременного превышения амплитуд колебаний сигнала над реперными значениями в обоих интервалах частот делают вывод о наличии горения в форсажной камере.

При горении в КС, вследствие турбулентности потока газов, существуют пульсации давления и соответствующие пульсации светимости продуктов сгорания, связанные с акустическими колебаниями в КС. Эти пульсации могут служить дополнительным диагностическим критерием процесса горения в ФКС, который не подвержен влиянию воздействия излучения солнца на работу сигнализатора горения.

Специфика воспринимаемого датчиком излучения состоит в том, что на максимальных, нефорсажных режимах работы двигателя, в газовом потоке в ФКС, могут содержаться локальные образования догорающих компонентов топлива из основной КС, дающих некоторую, небольшую, пульсационную составляющую в узкополосном канале обработки информации. Такого же уровня пульсационная составляющая может появляться и при максимальном горении в ФКС за счет того, что оптическая плотность среды возрастает и газовый поток становится практически малопрозрачным по всему объему. Общая энергия излучения из объема ФКС существенно больше пульсационной (в резонансной области) компоненты, которая принимается из небольшой, по толщине, относительно прозрачной периферийной области объема горения, близкой к окну приемного датчика.

Экспериментальные исследования спектра плотности мощности электрического сигнала с датчика давления и оптического приемника излучения, установленных на ФКС, показали, что на уровне 20 дБ полная энергия сигнала находится в диапазоне до 5 кГц, чем обуславливается выбор широкополосного интервала частот 0-5000 Гц.

Выбор конкретного диапазона фильтрации узкополосного канала назначается на основе стендовых исследований двигателя с конкретной ФКС на всех режимах форсирования. Например, характерное значение диапазона для современных ФКС составляет 500-700 Гц. Также определяют средние значения электрического сигнала по каждому каналу на всех режимах форсирования и в качестве реперных значений выбирают минимальные величины с соответствующим коэффициентом запаса.

Амплитуды колебаний в узкополосном и широкополосном интервалах сильно различаются, поэтому осредненные значения колебаний каждого интервала сравниваются с реперными значениями, полученными экспериментально для каждого типа двигателя на испытаниях. Наличие одновременного превышения в обоих интервалах дает гарантированный показатель наличия горения в ФКС, т.к. в узкополосном интервале сигнал в ФКС может быть ложным из-за влияния основной камеры сгорания с ее колебаниями давления газового потока, а в широкополосном ложный сигнал может появиться из-за иного источника коротковолновых излучений, в т.ч. солнечного света.

На чертеже представлен вариант структуры устройства, реализующий заявленный способ, где:

1 - камера сгорания;

2 - стабилизаторы;

3 - зона горения;

4 - волоконный световод;

5 - фотодиод;

6 - трансимедансный усилитель;

7 - полосовой фильтр;

8 - амплитудный детектор;

9 - задатчик реперных уровней;

10 и 11 - компараторы;

12 - логическая ячейка «И»;

13 - бинарный выход сигнализатора.

В камере сгорания 1 за стабилизаторами 2 локализована зона горения 3, на которую ориентирован входной торец световода 4, выходной торец световода 4 оптически сопряжен с фотодиодом 5. Фототок последнего преобразуется в напряжение трансимпедансным усилителем 6, сигнал с которого подается на компаратор полного информационного сигнала 11 и на узкополосный полосовой фильтр 7, где выделяется и усиливается пульсационная составляющая сигнала, пропорциональная излучению из зоны горения. Далее этот сигнал детектируется узлом 8, напряжение с которого сравнивается вторым компаратором 10 с заданным уровнем, установленным на задатчике 9.

Похожие патенты RU2711186C1

название год авторы номер документа
Способ управления газотурбинным двигателем с форсажной камерой сгорания 2019
  • Зеликин Юрий Маркович
  • Королев Виктор Владимирович
  • Крылов Николай Дмитриевич
RU2720059C1
Инфракрасная защита летательного аппарата 2022
  • Носков Александр Георгиевич
RU2797618C1
ТУРБОРЕАКТИВНЫЙ ДВИГАТЕЛЬ САМОЛЕТА, ВЫПОЛНЕННЫЙ С ВОЗМОЖНОСТЬЮ ЗАЩИТЫ ОТ РАКЕТЫ, ОСНАЩЕННОЙ ГОЛОВКОЙ САМОНАВЕДЕНИЯ, И СПОСОБ ЕГО ЗАЩИТЫ (ВАРИАНТЫ) 2012
  • Валеев Георгий Галиуллович
RU2491439C1
СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ СГОРАНИЯ 2018
  • Зеликин Юрий Маркович
  • Инюкин Алексей Александрович
  • Королев Виктор Викторович
RU2705500C1
УСТРОЙСТВО СИНХРОНИЗАЦИИ СКОРОСТНОЙ ВИДЕОСЪЕМКИ ПРОЦЕССОВ ВИБРАЦИОННОГО ГОРЕНИЯ 2011
  • Асланян Эдуард Владимирович
RU2467496C1
СПОСОБ КОНТРОЛЯ ВИБРАЦИОННОГО ГОРЕНИЯ В КАМЕРЕ СГОРАНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 2004
  • Голенцов Дмитрий Анатольевич
  • Божков Александр Иванович
RU2272923C1
СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ СГОРАНИЯ 2018
  • Зеликин Юрий Маркович
  • Инюкин Алексей Александрович
  • Королев Виктор Викторович
RU2706518C1
СПОСОБ УПРАВЛЕНИЯ ГАЗОТУРБИННЫМ ДВИГАТЕЛЕМ С ФОРСАЖНОЙ КАМЕРОЙ СГОРАНИЯ И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2016
  • Вовк Михаил Юрьевич
  • Зеликин Юрий Маркович
  • Кирюхин Владимир Валентинович
  • Королёв Виктор Владимирович
  • Федюкин Владимир Иванович
RU2631974C2
Способ управления газотурбинным двигателем с форсажной камерой сгорания 2022
  • Зеликин Юрий Маркович
  • Королев Виктор Владимирович
RU2781460C1
УСТРОЙСТВО ЗАЩИТЫ ОТ ЗАГРЯЗНЕНИЯ ОПТИЧЕСКИХ ДАТЧИКОВ В УЗЛАХ ВОЗДУШНО-РЕАКТИВНЫХ ДВИГАТЕЛЕЙ 2019
  • Асланян Эдуард Владимирович
  • Берлов Илья Владимирович
  • Критский Василий Юрьевич
RU2720186C1

Иллюстрации к изобретению RU 2 711 186 C1

Реферат патента 2020 года СПОСОБ СИГНАЛИЗАЦИИ НАЛИЧИЯ ГОРЕНИЯ В ФОРСАЖНОЙ КАМЕРЕ ВОЗДУШНО-РЕАКТИВНОГО ДВИГАТЕЛЯ

Изобретение относится к измерительной технике, и может быть использовано, например, для сигнализации наличия горения в форсажной камере сгорания воздушно-реактивного двигателя. Способ сигнализации наличия горения в форсажной камере сгорания воздушно-реактивного двигателя, включающий регистрацию излучения из зоны горения, обработку полученного сигнала и вынесение решения о наличии горения. Полученный при регистрации излучения в процессе эксплуатации двигателя общий электрический сигнал разделяют на широкополосный в интервале частот 0-5000 Гц и узкополосный, при этом узкополосный интервал частот выбирают исходя из акустических и геометрических характеристик форсажной камеры сгорания, выделяют в этих интервалах средние значения амплитуд колебаний сигнала и сравнивают их с полученными до начала эксплуатации двигателя реперными значениями для каждого интервала, в случае одновременного превышения амплитуд колебаний сигнала над реперными значениями в обоих интервалах частот делают вывод о наличии горения в форсажной камере. Технический результат - повышение надежности контроля за процессом запуска форсажной камеры сгорания. 1 ил.

Формула изобретения RU 2 711 186 C1

Способ сигнализации наличия горения в форсажной камере сгорания воздушно-реактивного двигателя, включающий регистрацию излучения из зоны горения, обработку полученного сигнала и сигнализацию о наличии горения, отличающийся тем, что полученный при регистрации излучения в процессе эксплуатации двигателя общий электрический сигнал разделяют на широкополосный в интервале частот 0-5000 Гц и узкополосный, при этом узкополосный интервал частот выбирают исходя из акустических и геометрических характеристик форсажной камеры сгорания, выделяют в этих интервалах средние значения амплитуд колебаний сигнала и сравнивают их с полученными до начала эксплуатации двигателя реперными значениями для каждого интервала, в случае одновременного превышения амплитуд колебаний сигнала над реперными значениями в обоих интервалах частот делают вывод о наличии горения в форсажной камере.

Документы, цитированные в отчете о поиске Патент 2020 года RU2711186C1

US 4029966 A1, 14.06.1977
US 5010827 A1, 30.04.1991
WO 1993009383 A1, 13.05.1993
СПОСОБ ФОРМИРОВАНИЯ СИГНАЛА НАЛИЧИЯ ГОРЕНИЯ В ФОРСАЖНОЙ КАМЕРЕ ВОЗДУШНО- РЕАКТИВНОГО ДВИГАТЕЛЯ 1973
  • Вьюнов С.А.
  • Эзрохи А.Б.
  • Асланян Э.В.
  • Парфёнов Г.Б.
  • Федоренкова В.К.
SU523554A1
US 4709155 A1, 24.11.1987
WO 1992010705 A1, 25.06.1992
US 4471221 A1, 11.09.1984.

RU 2 711 186 C1

Авторы

Асланян Эдуард Владимирович

Берлов Илья Владимирович

Критский Василий Юрьевич

Даты

2020-01-15Публикация

2019-04-19Подача