Электробаромембранный аппарат комбинированного типа Российский патент 2020 года по МПК B01D61/18 B01D63/06 B01D63/08 

Описание патента на изобретение RU2712599C1

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электроосмофильтрации и может быть использовано в химической, текстильной, микробиологической, медицинской, пищевой и других областях промышленности.

Аналогом данной конструкции является плоскокамерный мембранный аппарат, приведенный в работе Дытнерского Ю.И. "Процессы и аппараты химической технологии. Часть 2.", М.: Химия, 1995, стр. 347-348, представляющий собой набор эллиптических мембранных элементов, находящихся между круглыми фланцами, и трубчатый мембранный модуль для фильтрации жидкости, конструкция которого приведена в патенте RU 2156645 С1, 27.09.2000.

Недостатками аналога являются: низкое качество и эффективность разделения растворов, невозможность дифференцированного выделения ионов в потоках прикатодного и прианодного пермеата на промежуточной ступени разделения. Частично недостатки устранены в прототипе.

Прототипом данной конструкции является мембранный аппарат комбинированного типа, конструкция которого приведена в патенте RU 2496560 С1, 27.10.2013, состоящий из двух крышек, имеющих штуцеры для ввода разделяемого раствора, отвода пермеата, ретентата и подачи воздуха для нагнетания давления в камеру для пермеата первой ступени, выступы для фиксации трубчатых модулей, корпуса плоскокамерного модуля, имеющего впадину для установки опорных колец, канала для отвода пермеата от плоских мембранных элементов, обратный клапан, дренажной сетки, пористой подложки, мембран, поплавкового уровнемера, двух трубчатых мембранных модулей, прокладок, герметизирующих заливок, байонетного кольца.

Недостатками прототипа являются: невозможность дифференцированного выделения ионов в потоках прикатодного и прианодного пермеата на промежуточной ступени разделения, высокое гидравлическое сопротивление в единице объема аппарата, низкое качество и эффективность разделения растворов.

Техническая задача-осуществление дифференцированного выделения ионов в потоках прикатодного и прианодного пермеата на первой ступени разделения, снижение гидравлического сопротивления в единице объема аппарата, повышение качества и эффективности разделения растворов, за счет того, что агрегат состоит: из крышек, имеющих штуцеры для ввода разделяемого раствора, отвода пермеата, ретентата и подачи воздуха для нагнетания давления в камеру для пермеата первой ступени, выступы для фиксации трубчатых модулей, корпуса плоскокамерного модуля, имеющего впадину для установки опорных колец, канала для отвода пермеата от плоских мембранных элементов, обратный клапан, дренажной сетки, пористой подложки, мембран, поплавкового уровнемера, двух трубчатых мембранных модулей, прокладок, герметизирующих заливок, байонетного кольца, отличающийся тем, что в агрегате имеются два штуцера вывода ретентата второй ступени, два штуцера вывода пермеата второй ступени и два штуцера подачи воздуха, камеры для прианодного и прикатодного пермеата первой ступени отделены диэлектрической перегородкой от камер вывода ретентата второй ступени, трубки трубчатого модуля, каналы для отвода прианодного и прикатодного пермеата, два обратных клапана, прианодные и прикатодные дренажные сетки, прианодные и прикатодные мембраны, два поплавковых уровнемера, прокладки с каналом для отвода прианодного и прикатодного пермеата, клеммы устройства для подвода электрического тока-анода и катода, выполненных в виде цилиндрических шпилек с резьбой, в которых имеются круглые сквозные прикатодные и прианодные проточки, проточные окна, монополярные электроды.

На фиг. 1 изображен главный вид электробаромембранного аппарата комбинированного типа; на фиг. 2 - вид сверху; на фиг. 3 - вид снизу; на фиг. 4-горизонтальный разрез А-А на фиг. 1; на фиг. 5 - сложный разрез Б-Б на фиг. 4; на фиг. 6 - сложный разрез В-В на фиг. 4; на фиг. 7 - выносной элемент фиг. 5.

Электробаромембранный аппарат комбинированного типа состоит из двух крышек 1 и 2; имеющих штуцер ввода разделяемого раствора 3; штуцеров вывода ретентата второй и первой ступени 4 и 5; штуцеров вывода пермеата второй ступени и подачи воздуха 6 и 7; камер для прианодного и прикатодного пермеата первой ступени 8 и 9; выступов для фиксации трубчатых модулей 10 и 11; трубок трубчатого модуля 12; корпуса плоскокамерного модуля 13; опорных колец 14; каналов для отвода прианодного и прикатодного пермеата 15 и 16; обратных клапанов 17; прианодной и прикатодной дренажных сеток 18 и 32; пористых подложек 19; прианодных и прикатодных мембран 20 и 31; поплавковых уровнемеров 21; прокладок 22; прокладок с каналом для отвода прианодного и прикатодного пермеата 23 и 24; герметизирующих заливок 25; байонетного кольца 26; клемм устройства для подвода электрического тока-анода 27 и катода 28, выполненных в виде цилиндрических шпилек с резьбой, в которых имеются круглые сквозные прикатодные и прианодные проточки 35 и 36; проточных окон 29; диэлектрических перегородок 30; монополярных электродов 33 и 34; камер вывода ретентата второй ступени 37.

Крышки 1, 2, штуцер ввода разделяемого раствора 3, штуцера вывода ретентата второй и первой ступени 4, 5, штуцера вывода пермеата второй ступени и подачи воздуха 6, 7, корпус плоскокамерного модуля 13, опорные кольца 14, байонетное кольцо 26, диэлектрические перегородки 30, выполнены из диэлектрического материала капролон или полиамид-6.

Трубки трубчатого модуля 12 могут быть изготовлены из трубчатого ультрафильтра типа БТУ 05/2.

Прианодные и прикатодные дренажные сетки 18, 32 могут быть выполнены из материала Х18Н10Т, 20Х23Н18, 10Х17Н13М2Т, О8Х18Т1.

Пористые подложки 19 могут быть выполнены из листа ватмана.

Прианодные и прикатодные мембраны 20, 31 могут быть выполнены из полотна мембран ОПМН-П, ОПМН-К, ОПМ-К, МГА-95, МГА-100, УАМ-50, УАМ-100.

Прокладки 22 и прокладки с каналом для отвода прианодного и прикатодного пермеата 23, 24 могут быть выполнены из паронита.

Герметизирующие заливки 25 из герметизирующих эпоксидных смол.

Монополярные электроды 33, 34 могут быть изготовлены из 20-45 процентного пористого проката типа Х18Н15-ПМ, Х18Н15-МП, Н-МП, ЛНПИТ, ЛПН-ПМ.

Аппарат работает следующим образом. Исходный раствор под трансмембранным давлением, превышающим осмотическое давление растворенных в нем веществ, через штуцер ввода разделяемого раствора 3, фиг. 1, 3, расположенного на крышке 2 подается в первую камеру разделения плоскокамерного модуля, образованную нижней крышкой 2, прокладкой 22, корпусом плоскокамерного модуля 13 и прианодной мембраной 20 далее переходит через проточные окна 29, фиг. 4, 5, 7, всего аппарата, попадая в последнюю камеру разделения плоскокамерного модуля, образованную верхней крышкой 1, прокладкой 22, корпусом плоскокамерного модуля 13 и прианодной мембраной 20 и выводится в виде ретентата через штуцер вывода ретентата первой ступени 5. Средние камеры разделения образованы межмембранными каналами, расположенными между прианодными и прикатодными мембранами 20 и 31, фиг. 5, 6, при этом разделяемый раствор переходит из одного межмембранного канала в последующие через проточные окна 29 всего аппарата.

При заполнении камер разделения всего аппарата разделяемым раствором на клеммы устройства для подвода электрического тока-анода 27 и катода 28, выполненные в виде цилиндрических шпилек с резьбой, в которых имеются круглые сквозные прикатодные и прианодные проточки 35 и 36, подается внешнее напряжение, которое устанавливает заданную постоянную плотность тока в растворе.

Растворенные вещества в разделяемом растворе диссоциируют на ионы (анионы и катионы).

Под действием электрического тока из первой, средней и последней камер разделения, фиг. 5, 6, анионы проникают через прианодную мембрану 20, пористую подложку 19 и по прианодной дренажной сетке 18 через прокладку с каналом для отвода прианодного пермеата 23, далее через круглые сквозные прианодные проточки 36 в цилиндрических шпильках с резьбой, выполняющих функцию клеммы устройства для подвода электрического тока-анода 27, в потоке прианодного пермеата по каналу для отвода прианодного пермеата 15 при открытом обратном клапане 17, заполняет камеру для прианодного пермеата первой ступени 8. А катионы проникают через прикатодную мембрану 31, пористую подложку 19 и по прикатодной дренажной сетке 32 через прокладку с каналом для отвода прикатодного пермеата 24, далее через круглые сквозные прикатодные проточки 35 в цилиндрических шпильках с резьбой, выполняющих функцию клеммы устройства для подвода электрического тока-катода 28, в потоке прикатодного пермеата по каналу для отвода прикатодного пермеата 16 при открытом обратном клапане 17, заполняет камеру для прикатодного пермеата первой ступени 9.

При заполнении камер для прианодного и прикатодного пермеата 8, 9, фиг. 5, 6 подача разделяемого раствора через штуцер ввода разделяемого раствора 3 в аппарат прекращается и включаются компрессоры, нагнетающие давление в камеры для прианодного и прикатодного пермеата 8, 9 первой ступени. Обратные клапаны 17, установленные в аппарате препятствуют попаданию прианодного и прикатодного пермеата 8, 9 из камер для пермеата первой ступени обратно в каналы для отвода прианодного и прикатодного пермеата 15, 16. Уровень прианодного и прикатодного пермеата в камерах для прианодного и прикатодного пермеата первой ступени 8, 9 отслеживается посредством поплавковых уровнемеров 21.

Исходный раствор, поступающий по штуцеру ввода разделяемого раствора 3, фиг. 5, 6, и проходящий по проточным окнам 29 всего аппарата переходит из первой, средней и последней камер разделения, очищается от анионов и катинов и выводится из аппарата через штуцер вывода ретентата первой ступени 5, фиг. 1, 2, 5, 6, верхней крышки 1.

Под действием давления, нагнетаемого компрессорами через штуцеры подачи воздуха 7, из камер для прианодного и прикатодного пермеата первой ступени 8, 9, фиг. 4, 5, 6, прианодный и прикатодный пермеат подается в трубки трубчатого модуля 12, где разделяется на ретентат второй ступени, попадающий в камеру вывода ретентата второй ступени 37, и через штуцеры 4 выводятся из аппарата, а пермеаты, образующиеся в результате проникновения через трубки трубчатого модуля 12, отводятся через штуцеры вывода пермеата второй ступени 6.

При опустошении камер для прианодного и прикатодного пермеата первой ступени 8, 9 компрессоры выключаются, подача воздуха через штуцера 7 прекращается. В это же время возобновляется подача исходного раствора через штуцер ввода разделяемого раствора 3 и процесс повторяется.

Дифференцированное выделение ионов в потоках прикатодного и прианодного пермеата на первой ступени разделения раствора позволяет получать растворы, обогащенные катионами и анионами, в виде оснований, кислот и растворенных газов, соответственно.

Снижение гидравлического сопротивления в единице объема аппарата осуществляется за счет того, что камеры для прианодного и прикатодного пермеата первой ступени 8, 9, фиг. 4, отделены диэлектрической перегородкой 30 от камеры вывода ретентата второй ступени 37 и прианодный и прикатодный пермеат перекачивается только по одному набору трубок трубчатого модуля 12.

Повышение качества и эффективности разделения растворов достигается тем, что снижена технологическая нагрузка на трубки трубчатого модуля 12, так как в них поступает прикатодный и прианодный пермеат первой ступени, который легче разделяется.

Таким образом, разделение раствора происходит в две стадии: на первой стадии разделяемый раствор проходит через первую, средние и последнюю камеры разделения в плоскокамерном модуле, а на второй - через два трубчатых модуля, что обеспечивает высокую степень очистки раствора.

Похожие патенты RU2712599C1

название год авторы номер документа
Электробаромембранный аппарат комбинированного типа 2022
  • Лазарев Сергей Иванович
  • Коновалов Дмитрий Николаевич
  • Михайлин Максим Игоревич
  • Коновалов Дмитрий Дмитриевич
  • Родионов Дмитрий Александрович
RU2776315C1
Электробаромембранный аппарат комбинированного типа 2022
  • Лазарев Сергей Иванович
  • Коновалов Дмитрий Николаевич
  • Галкин Павел Александрович
  • Малин Павел Михайлович
RU2788625C1
Электробаромембранный аппарат комбинированного типа 2023
  • Лазарев Сергей Иванович
  • Коновалов Дмитрий Николаевич
  • Малин Павел Михайлович
  • Брянкина Александра Константиновна
  • Родина Антонина Александровна
RU2822266C1
Электробаромембранный аппарат комбинированного типа 2023
  • Лазарев Сергей Иванович
  • Коновалов Дмитрий Николаевич
  • Шель Наталья Владимировна
  • Малин Павел Михайлович
  • Коновалов Дмитрий Дмитриевич
  • Игнатов Николай Николаевич
RU2804723C1
МЕМБРАННЫЙ АППАРАТ КОМБИНИРОВАННОГО ТИПА 2012
  • Кочетов Виктор Иванович
  • Лазарев Сергей Иванович
  • Попов Вадим Юрьевич
RU2496560C1
ЭЛЕКТРОБАРОМЕМБРАННЫЙ АППАРАТ ПЛОСКОКАМЕРНОГО ТИПА 2009
  • Ковалев Сергей Владимирович
  • Лазарев Сергей Иванович
  • Чепеняк Павел Александрович
  • Данилов Александр Юрьевич
  • Лазарев Константин Сергеевич
RU2403957C1
Электробаромембранный аппарат плоскокамерного типа 2023
  • Лазарев Сергей Иванович
  • Коновалов Дмитрий Николаевич
  • Крылов Алексей Викторович
  • Лазарев Дмитрий Сергеевич
  • Коновалов Дмитрий Дмитриевич
RU2806446C1
Электробаромембранный аппарат плоскокамерного типа 2018
  • Лазарев Сергей Иванович
  • Ковалев Сергей Владимирович
  • Коновалов Дмитрий Николаевич
RU2689617C1
Электробаромембранный аппарат плоскокамерного типа 2019
  • Лазарев Сергей Иванович
  • Ковалев Сергей Владимирович
  • Коновалов Дмитрий Николаевич
  • Луа Пепе
  • Котенев Сергей Игоревич
RU2718402C1
Электробаромембранный аппарат плоскокамерного типа 2020
  • Лазарев Сергей Иванович
  • Ковалев Сергей Владимирович
  • Коновалов Дмитрий Николаевич
  • Ковалева Ольга Александровна
  • Левин Александр Александрович
RU2744408C1

Иллюстрации к изобретению RU 2 712 599 C1

Реферат патента 2020 года Электробаромембранный аппарат комбинированного типа

Изобретение относится к области разделения, концентрирования и очистки растворов методами электромикрофильтрации, электроультрафильтрации, электроосмофильтрации и может быть использовано в химической, текстильной, микробиологической, медицинской, пищевой и других областях промышленности. Электробаромембранный аппарат комбинированного типа включает две крышки, имеющие штуцеры для ввода разделяемого раствора, отвода пермеата первой ступени, отвода ретентата первой ступени и отвода ретентата второй ступени, два трубчатых мембранных модуля, выступы для фиксации трубчатых модулей, корпус плоскомембранного модуля, имеющий впадину для установки опорных колец, обратный клапан, пористую подложку, поплавковый уровнемер, герметизирующие заливки, байонетное кольцо. Аппарат содержит монополярные электроды - анод и катод, клеммы устройства для подвода электрического тока, выполненные в виде цилиндрических шпилек с резьбой, в которых имеются круглые сквозные прианодные и прикатодные проточки. Камера для прианодного и прикатодного пермеата первой ступени отделена диэлектрической перегородкой от камер вывода ретентата второй ступени. Аппарат также содержит прианодные и прикатодные мембраны, прианодные и прикатодные сетки, каналы для отвода прианодного и прикатодного пермеата. Каждая из камер прианодного и прикатодного пермеата первой ступени содержит поплавковый уровнемер, обратный клапан и штуцер подачи воздуха. В плоскомембранном модуле выполнены проточные окна. Аппарат содержит два штуцера вывода пермеата второй ступени, соединенные по потоку с трубчатым мембранным модулем, и два штуцера вывода ретентата второй ступени, соединенные по потоку с трубчатым мембранным модулем и расположенные в камерах вывода ретентата второй ступени. Технический результат: дифференцированное выделение ионов в потоках прикатодного и прианодного пермеата на первой ступени разделения, снижение гидравлического сопротивления в единице объема аппарата, повышение качества и эффективности разделения растворов. 7 ил.

Формула изобретения RU 2 712 599 C1

Электробаромембранный аппарат комбинированного типа, включающий две крышки, имеющие штуцеры для ввода разделяемого раствора, отвода пермеата первой ступени, отвода ретентата первой ступени и отвода ретентата второй ступени, два трубчатых мембранных модуля, выступы для фиксации трубчатых модулей, корпус плоскомембранного модуля, имеющий впадину для установки опорных колец, обратный клапан, пористую подложку, поплавковый уровнемер, герметизирующие заливки, байонетное кольцо, отличающийся тем, что содержит монополярные электроды - анод и катод, клеммы устройства для подвода электрического тока, выполненные в виде цилиндрических шпилек с резьбой, в которых имеются круглые сквозные прианодные и прикатодные проточки, камеру для прианодного и прикатодного пермеата первой ступени, отделенную диэлектрической перегородкой от камер вывода ретентата второй ступени, прианодные и прикатодные мембраны, прианодные и прикатодные сетки, каналы для отвода прианодного и прикатодного пермеата, при этом каждая из камер прианодного и прикатодного пермеата первой ступени содержит поплавковый уровнемер, обратный клапан и штуцер подачи воздуха, а в плоскомембранном модуле выполнены проточные окна, также аппарат содержит два штуцера вывода пермеата второй ступени, соединенные по потоку с трубчатым мембранным модулем, и два штуцера выводы ретентата второй ступени, соединенные по потоку с трубчатым мембранным модулем и расположенные в камерах вывода ретентата второй ступени.

Документы, цитированные в отчете о поиске Патент 2020 года RU2712599C1

МЕМБРАННЫЙ АППАРАТ КОМБИНИРОВАННОГО ТИПА 2012
  • Кочетов Виктор Иванович
  • Лазарев Сергей Иванович
  • Попов Вадим Юрьевич
RU2496560C1
Мембранный аппарат 1989
  • Лазарев Сергей Иванович
  • Коробов Виктор Борисович
  • Коновалов Виктор Иванович
SU1681926A1
Электробаромембранный аппарат трубчатого типа 2016
  • Ковалева Ольга Александровна
  • Лазарев Сергей Иванович
  • Попов Роман Викторович
  • Ковалев Сергей Владимирович
  • Лазарев Константин Сергеевич
RU2625669C1
Электробаромембранный аппарат рулонного типа 2016
  • Лазарев Сергей Иванович
  • Абоносимов Олег Аркадьевич
  • Ковалев Сергей Владимирович
  • Полянский Константин Константинович
  • Лазарев Константин Сергеевич
  • Шестаков Константин Валерьевич
RU2634010C2
Электробаромембранный аппарат трубчатого типа 2019
  • Лазарев Сергей Иванович
  • Ковалев Сергей Владимирович
  • Хохлов Павел Анатольевич
  • Шестаков Константин Валерьевич
RU2700333C1
US 6436264 B1, 20.08.2002
US 2019111393 A1, 18.04.2019
US 7029563 B2, 18.04.2006.

RU 2 712 599 C1

Авторы

Лазарев Сергей Иванович

Хорохорина Ирина Владимировна

Ковалев Сергей Владимирович

Михайлин Максим Игоревич

Лазарев Дмитрий Сергеевич

Даты

2020-01-29Публикация

2019-07-09Подача