Электроакустический ненаправленный преобразователь Российский патент 2020 года по МПК H04R17/00 

Описание патента на изобретение RU2712924C1

Изобретение относится к области акустического приборостроения, а именно к конструированию ненаправленных преобразователей, и может быть использовано при проведении различного рода океанографических исследований.

Одной из важных задач, возникающих при разработке гидроакустических преобразователей, является обеспечение ими ненаправленного излучения (приема) звуковых волн. Необходимость в этом возникает, например, при изучении лучевых картин звуковых волн распространяющихся в океане, измерении объемного рассеяния, проведения различного рода гидроакустических измерений, в системах звукоподводной связи, для работы гидроакустических маяков и во многих других случаях.

Для обеспечения ненаправленного излучения (приема) часто используются пьезокерамические преобразователи, выполненные в виде пустотельной сферы [Свердлин Г.М. Прикладная гидроакустика / Л.: Судостроение, 1990, с. 279]. Недостатком такой конструкции являются ограничения, связанные с техническими трудностями выполнения ее на низкие резонансные частоты (менее 10 кГц). Максимальный размер (диаметр) такого сферического преобразователя, как правило, не превышает 80-100 мм [Пьезокерамические материалы и элементы / Каталог АО «НИИ «Элпа», с. 23]. Кроме того его конструкция сложна для армирования и обладает ограниченной глубоководностью. Наличие патрубка или отверстия в пьезокерамических сферах для токоввода уменьшает прочность их конструкции. Заполнение внутренней полости пьезокерамических сфер электроизолирующей жидкостью или резиноподобным материалом [SU а.с. №365861 Глубоководный гидрофон], делает конструкцию преобразователя компенсированной, глубоководной, но не решает две другие указанные проблемы.

Увеличение прочности и габаритов ненаправленного излучателя, имеющего компенсированную конструкцию, в [SU а.с. №398289 Сферический гидроакустический преобразователь] достигается путем выполнения его в виде набора плоских пьезокерамических полуколец (дуг) веерообразно соединенных в диаметральной линии под одинаковыми углами. С внешней стороны конструкция обтягивается оболочкой, а ее внутренняя полость заполняется электроизолирующей жидкостью (маслом). Такой преобразователь имеет сложную конструкцию, а противофазное излучение внутренней полости через зазоры между дугами может ухудшать ненаправленные свойства преобразователя и снижать его эффективность.

С целью увеличения мощности излучения и понижения резонансной частоты в [SU а.с. №716626 Электроакустический преобразователь] предложена конструкция в виде двух жестко скрепленных между собой металлических полусфер, на внутренней поверхности которых закреплены пьезоактивные дуги с угловым размером меньше четверти окружности. Резонансная частота такого преобразователя определяется в основном резонансной частотой составной сферической оболочки. Конструкция является многоэлементной и достаточно сложной в изготовлении.

Другим вариантом низкочастотного ненаправленного преобразователя является устройство [SU а.с. №778811 Электроакустический преобразователь], содержащее сферическую оболочку (в одном из вариантов выполненную из двух полусфер) на внутренней поверхности которой имеется набор глухих отверстий, в которые вклеены пьезокерамические диски. Резонансная частота этого преобразователя определяется резонансной частотой его композитной сферической оболочки. Конструкция является многоэлементной и достаточно сложной и трудоемкой в изготовлении.

В качестве ненаправленного излучателя может быть использована также сферическая антенна [RU Пат. №2460092 Гидроакустическая антенна сферической формы для гидролокатора], рабочая частота которой определяется образующими их преобразователями, имеющими сравнительно высокую рабочую частоту (как правило, десятки кГц). Сферические антенны являются конструктивно сложным и достаточно дорогостоящим оборудованием.

Таким образом, в настоящее время не имеется достаточно простой в исполнении и надежной в эксплуатации конструкции ненаправленного, эффективного и низкочастотного излучателя (единицы кГц и ниже), способного выдерживать сравнительно большое гидроакустическое давление.

Наиболее близким по технической сущности к предлагаемому изобретению является преобразователь [US Пат. №3215977 Acoustic transducer], состоящий из пьезокерамического стержня, жестко связанного своими торцами с двумя одинаковыми толстыми тарельчатыми накладками с выпуклой внешней поверхностью, которые одновременно служат корпусом преобразователя. Вдоль окружности основания тарельчатых накладок установлены герметизирующие прокладки. Преобразователь армирован стяжкой, проходящей через отверстие в пьезостержне и закрепленной на накладках. Согласно описанию патента, преобразователь имеет резонансную частоту 40 кГц, и в диапазоне частот до 15 кГц обладает сравнительно равномерной частотной характеристикой.

Недостатком этого преобразователя является то, что в области резонансной частоты тарельчатые накладки, обладая сравнительно небольшой изгибной жесткостью, будут совершать изгибные колебания, что приведет к большой неравномерности в распределении колебательной скорости по поверхности преобразователя (вплоть до появления противофазных участков, что зависит от материала и отношения толщины к диаметру тарельчатых накладок). При этом будет формироваться характеристика направленности с выраженной неравномерностью. Слабонаправленное излучение будет формироваться лишь при сравнительно малых волновых размерах преобразователя, т.е. на частотах существенно ниже резонансной, например, в области частот до 15-20 кГц, где эффективность излучения преобразователя будет мала. Таким образом, характеристика направленности такого преобразователя сильно зависит от рабочей частоты и его волновых размеров.

Техническая задача, решаемая предлагаемым изобретением, заключается в создании преобразователя, обладающего ненаправленными свойствами в режиме излучения (приема) в области своей резонансной частоты на сравнительно низких частотах (единицы кГц), при условии эффективного излучения и способного работать при высоком гидростатическом давлении. Кроме того, предлагаемый преобразователь позволяет обеспечить достаточно хорошую чувствительность в режимах излучения и приема за счет использования продольного пьезоэффекта, например, по сравнению с равновеликими пьезокерамическими оболочками, использующими поперечный пьезоэффект, эффективность которого в два раза меньше.

Поставленная задача решается за счет того, что в предлагаемом преобразователе так же, как в известном (прототипе), преобразователь содержит пьезостержень, две одинаковые осесимметричные накладки, соединенные армирующей стяжкой, и герметизирующие прокладки, установленные в месте сопряжения накладок. Но в отличие от известного, в предлагаемом преобразователе накладки выполнены в виде сплошных конусов, обращенных основаниями друг к другу, со стороны этих оснований выполнены глухие цилиндрические отверстия, не превышающие по глубине половины длины пьезостержня, который помещен в них и жестко прикреплен своими торцами к торцам указанных отверстий.

Сущность предлагаемого изобретения поясняется чертежами, представленными на фиг. 1-4. На фиг. 1 схематически показан предлагаемый преобразователь; на фиг. 2 схематически показан характер колебаний и эпюра распределения колебательной скорости по поверхности преобразователя. На фиг. З приведены результаты расчетов характеристики направленности для разных значений волновых размеров предлагаемого преобразователя, а на фиг. 4 показаны экспериментально полученные характеристики направленности.

Электроакустический ненаправленный преобразователь (фиг. 1) состоит из пьезокерамического секционированного стержня 1, двух одинаковых пассивных накладок 2, выполненных в виде сплошных конусов, обращенных основаниями друг к другу, а также армирующей стяжки 3, выполненной в данном случае в виде болтового соединения, и акустически гибких герметизирующих прокладок 4. В каждом основании конусных накладок выполнено цилиндрическое глухое отверстие, не превышающее по глубине половины длины пьезокерамического стержня 1. Последний располагается внутри указанных отверстий пассивных конусных накладок 2 и жестко соединяется с ними по торцам с помощью эпоксидного компаунда и армирующего болтового соединения 3. Перед окончательной сборкой и армированием преобразователя, между основаниями конусных накладок 2 устанавливаются герметизирующие прокладки 4, которые для большей надежности герметизации могут располагаться не только по внешнему контуру оснований конусных накладок, но и по внешнему контуру цилиндрических отверстий, например, как показано на фиг. 1. Таким образом, конусные накладки образуют прочный корпус преобразователя, а их внешняя поверхность определяет биконическую форму поверхности предлагаемого преобразователя.

Достигаемый технический результат заключается в возможности получения близкой к сферической характеристики направленности с помощью предлагаемого преобразователя в области частоты его резонанса. Это обеспечивается тем, что конусные накладки, ввиду жесткости их конструкции и заполнения собой почти всей внутренней области преобразователя (за исключением пьезостержня), с позиции нагруженности на них торцов пьезостержня, в первом приближении можно рассматривать как чисто инерциальную нагрузку, т.е. как сосредоточенные массы. При этом резонансная частота преобразователя с достаточной для практики точностью (порядка 5%) может быть определена по формуле где - резонансная частота пьезостержня; m - масса пьезостержня; М - масса одной конической накладки. В этом случае при колебаниях пьезостержня каждая из его накладок будут перемещаться как единое целое, т.е. совершать колебания типа поршневых. Возникающее при этом распределение амплитуды нормальной компоненты колебательной скорости vn по поверхности преобразователя схематически показано на фиг. 2. Ориентировочные расчеты показывают, что волновые размеры преобразователя на резонансной частоте могут находиться в пределах 1≤kврR≤2, где св - скорость звука в воде; R - радиус сферической поверхности, описанной вокруг преобразователя. При этом максимальное расстояние d от поверхности преобразователя до описанной вокруг него сферической поверхности не превышает d<(0.05-0.1) λв, где λв - длина звуковой волны в воде. Тогда, с учетом фазового набега, распределение радиальной компоненты колебательной скорости, пересчитанной на сферическую поверхность радиуса R и соответствующей эпюре vn, приведенной на фиг. 2, можно записать в виде: где vz - амплитуда осевой колебательной скорости; - текущая частота; α - угол наклона образующей конической поверхности; θ - текущий угол;

На фиг. 3 для разных значений волновых размеров kвR показаны результаты расчета нормированных характеристик направленности для предлагаемого преобразователя, полученные с использованием выражения для звукового давления в дальнем поле, создаваемого осесимметричным сферическим излучателем радиуса R:

где zB - удельный импеданс воды; - полиномы Лежандра; Dn(kвR) и δn(kвR) - функции Морза; r - расстояние до точки наблюдения; t - время. Множитель в виде суммы в выражении для звукового давления определяет ненормированную характеристику направленности преобразователя . Параметры расчета и номера кривых соответствуют: α=π/4; 1-kвR=0.8; 2-kвR=1.2; 3-kвR=1.6; 4-kвR=2.0; 5-kвR=2.4. Расчет показывает, что в достаточно большом диапазоне частот (волновых размеров kвR) предлагаемого преобразователя его характеристика направленности близка к сферической.

Если использовать полусферические внешние поверхности пассивных накладок, то внешняя поверхность преобразователя будет совпадать с поверхностью описанной вокруг него сферы, на которой распределение нормальной (радиальной) компоненты колебательной скорости будет В этом случае неравномерность характеристики направленности для указанных волновых размеров преобразователя будет существенно больше. Так например, при kвR≥1 неравномерность характеристики направленности, определяемая как N-[Rmax(θ)-Rmin(θ)]/Rmax(θ), для преобразователя с полусферическими накладками будет N≥25%.

Принцип работы предлагаемого электроакустического ненаправленного преобразователя заключается в следующем. При подаче возбуждающего электрического напряжения на пьезостержень, последний начинает совершать продольные колебания вдоль оси z (см. фиг 1, на фиг. 2 колебания условно показаны двойной стрелкой). При этом, закрепленные по торцам пьезостержня конические накладки 1 также начинают совершать колебания в направлении оси z, приближаясь друг к другу за один полупериод колебаний и удаляясь друг от друга за другой. Таким образом, на внешней поверхности преобразователя формируется синфазное распределение нормальной компоненты колебательной скорости. Благодаря выбору внешней поверхности пассивных накладок в виде конусов и перемещению их как единое целое, на внешней биконической поверхности преобразователя получается близкое к равномерному распределение нормальной компоненты колебательной скорости vn (см. фиг. 2). Ввиду сравнительно небольших в волновом отношении расстояний от излучающей поверхности преобразователя до описанной вокруг него сферической поверхности радиуса R, можно считать, что на ней также формируется близкое к равномерному распределение радиальной компоненты колебательной скорости vR(θ). Последнее обстоятельство служит обоснованием получения близкого к ненаправленному излучения, подобно пульсирующей сфере (излучателю нулевого порядка).

Поскольку внешняя поверхность пассивных накладок выполняется таким образом, что нормальная составляющая колебательной скорости присутствует практически на всей внешней поверхности преобразователя, то будучи погруженным в водную среду, преобразователь будет излучать (принимать) звуковые волны во всех направлениях. В случае необходимости, путем выбора формы внешней поверхности пассивных накладок (делая ее составленной из двух-трех конических поверхностей с разными углами наклона их образующей) можно добиться практически равномерной (сферической) характеристики направленности в области рабочих частот рассматриваемого преобразователя.

В качестве пьезостержня может быть использован как пьезокерамический, так и любой другой активный элемент, совершающий продольные колебания. Армирующая стяжка может быть выполнена как центральный элемент, расположенный вдоль оси преобразователя, так и в виде симметрично расположенных с внешней стороны пьезостержня трех-четырех элементов армирования (болтовых или винтовых соединений). При этом сам пьезостержень может быть собран из сплошных пьезокерамических шайб. Указанные возможные замены не отражаются на работе предлагаемого преобразователя, поскольку это все происходит внутри его корпуса, образованного коническими накладками.

Ввиду симметрии конструкции предлагаемого преобразователя, его крепление удобно располагать в средней плоскости поперечного сечения пьезокерамического стержня, что обеспечивает определенную виброзащиту и устойчивость к помехам в режиме приема. Поскольку внешняя поверхность преобразователя определяется геометрией его пассивных накладок, то пьезокерамический стержень 1, а также глухие отверстия в конусных накладках 2, могут иметь любую нужную конфигурацию поперечного сечения. В частности, с целью увеличения мощности излучения, пьезокерамический стержень может иметь бочкообразный вид, т.е. утолщение в своей средней части.

В качестве примера реализации предлагаемого преобразователя на фиг. 4 приведены его экспериментальные нормированные характеристики направленности, полученные для макета с конусными накладками, выполненными из латуни, имеющими радиус основания R=60 мм, угол наклона образующей α=π/4.

Пьезостержень собран из 8 пьезокерамических шайб состава ЦТБС-3 размером ∅34×∅14×7 мм с электрически параллельным соединением. Армирование преобразователя осуществлялось с помощью центральной стальной стяжки ∅6 мм. Крепление располагалось в узловой плоскости пьезостержня. Резонансная частота преобразователя (расчет дает Кривая 1 соответствует излучению на резонансной частоте а кривая 2 - на более высокой частоте (kвR≈1.76). Разные уровни кривых 1 и 2 показывают изменение уровня излучения на соответствующих частотах. Макет преобразователя обеспечивал полосу пропускания и удельную мощность излучения 0.6 Вт/см2 при напряженности электрического поля 1000 В/см. Неравномерность характеристики направленности в полосе пропускания не превышала N≤7%.

Таким образом, предлагаемый электроакустический ненаправленный преобразователь обеспечивает эффективное ненаправленное излучение (прием) звуковых волн в низкочастотном диапазоне частот (единицы кГц и ниже) с неравномерностью характеристики направленности, не превышающей 10% и возможность работы при значительном гидростатическом давлении. Преобразователь имеет сравнительно простую конструкцию, которая позволяет установку удобного, не влияющего на работу преобразователя, крепления, а также - возможность армирования.

Похожие патенты RU2712924C1

название год авторы номер документа
ШИРОКОПОЛОСНЫЙ ЭЛЕКТРОАКУСТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ 2004
  • Борисенко Н.Н.
  • Душаткин В.Н.
  • Киселев А.А.
  • Тагобицкий В.М.
RU2267235C1
ГИДРОАКУСТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ МАЯКА-ОТВЕТЧИКА 2007
  • Касаткин Борис Анатольевич
RU2340122C1
ПЬЕЗОЭЛЕКТРИЧЕСКИЙ СТЕРЖНЕВОЙ ПРЕОБРАЗОВАТЕЛЬ 2011
  • Голубева Галина Хацкелевна
  • Беляков Игорь Иванович
  • Михайлов Геннадий Александрович
RU2469495C1
ГИДРОАКУСТИЧЕСКИЙ СТЕРЖНЕВОЙ ПРЕОБРАЗОВАТЕЛЬ 2004
  • Позерн Владимир Игоревич
  • Павлов Рев Петрович
  • Ступак Оксана Борисовна
  • Виноградова Людмила Александровна
  • Кудрявцев Максим Владимирович
  • Дудаков Олег Николаевич
  • Апухтина Елена Анатольевна
RU2270533C2
ГИДРОАКУСТИЧЕСКИЙ ИЗЛУЧАТЕЛЬ 1996
  • Позерн В.И.
  • Ступак О.Б.
RU2112326C1
ГИДРОАКУСТИЧЕСКАЯ АНТЕННА 1998
  • Позерн В.И.
  • Павлов Р.П.
  • Шабров А.А.
RU2166840C2
ГИДРОАКУСТИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ МАЯКА-ОТВЕТЧИКА 1993
  • Остроухов А.А.
  • Черняховский А.Е.
RU2044411C1
ГИДРОАКУСТИЧЕСКАЯ МНОГОЭЛЕМЕНТНАЯ АНТЕННА И ПЬЕЗОЭЛЕКТРИЧЕСКИЙ СТЕРЖНЕВОЙ ПРЕОБРАЗОВАТЕЛЬ ДЛЯ ТАКОЙ АНТЕННЫ 2000
  • Беляков И.И.
  • Голубева Г.Х.
  • Миронов А.Д.
  • Михайлов Г.А.
RU2167496C1
ГИДРОАКУСТИЧЕСКИЙ ИЗЛУЧАТЕЛЬ 1997
  • Позерн В.И.
  • Апухтина Е.А.
RU2131173C1
УЛЬТРАЗВУКОВОЕ ПРИЕМОИЗЛУЧАЮЩЕЕ УСТРОЙСТВО ДЛЯ РАБОТЫ В ГАЗОВОЙ СРЕДЕ 1993
  • Степанов Б.Г.
  • Дианов Д.Б.
RU2038867C1

Иллюстрации к изобретению RU 2 712 924 C1

Реферат патента 2020 года Электроакустический ненаправленный преобразователь

Изобретение относится к акустике, к акустическим преобразователям. Электроакустический ненаправленный преобразователь содержит пьезостержень, две одинаковые осесимметричные накладки, выполненные в виде сплошных конусов, соединенных армирующей стяжкой, и герметизирующие прокладки, установленные в месте сопряжения накладок, которые обращены основаниями друг к другу, а со стороны этих оснований выполнены глухие цилиндрические отверстия, не превышающие по глубине половины длины пьезостержня, который располагается в них и жестко прикрепляется своими торцами к торцам указанных отверстий. Технический результат заключается в получении равномерной сферической диаграммы направленности, а также повышение чувствительности. 4 ил.

Формула изобретения RU 2 712 924 C1

Электроакустический ненаправленный преобразователь, содержащий пьезостержень, две одинаковые осесимметричные накладки, соединенные армирующей стяжкой, и герметизирующие прокладки, установленные в месте сопряжения накладок, отличающийся тем, что накладки выполнены в виде сплошных конусов, обращенных основаниями друг к другу, со стороны этих оснований выполнены глухие цилиндрические отверстия, не превышающие по глубине половины длины пьезостержня, который помещен в них и жестко прикреплен своими торцами к торцам указанных отверстий.

Документы, цитированные в отчете о поиске Патент 2020 года RU2712924C1

US 3215977 A, 02.11.1965
US 4432080 A1, 14.02.1984
WO 1989009531 A1, 05.10.1989
Электроакустический преобразователь 1978
  • Долгов Сергей Николаевич
  • Кулешов Михаил Григорьевич
SU778811A1

RU 2 712 924 C1

Авторы

Степанов Борис Георгиевич

Даты

2020-02-03Публикация

2019-06-14Подача