Устройство экранирования электронных узлов многослойной СВЧ платы от электромагнитного излучения Российский патент 2020 года по МПК H05K9/00 

Описание патента на изобретение RU2713650C1

Описание изобретения

Устройство экранирования электронных узлов многослойной СВЧ платы от электромагнитного излучения

Изобретение относится к радиоэлектронике, а именно к устройствам защиты СВЧ модулей от внешнего и внутреннего паразитного электромагнитного излучения (ЭМИ) и может быть использовано для экранирования узлов СВЧ модуля от любого ЭМИ.

В качестве ближайшего аналога заявленного изобретения выбран способ экранирования в электронном модуле, предложенный в патенте Российской Федерации на изобретение № 2602835 (заявка от 13.05.2015 RU2015117915). Техническим результатом данного изобретения, является полное экранирование узлов электронного модуля на многослойной печатной плате от внешних паразитных излучений в диапазоне частот от единиц герц до десятков гигагерц. Результат достигается тем, что в многослойной печатной плате готовят углубление, на дно которого устанавливают активные (кристаллы) и пассивные элементы (конденсаторы, индуктивности, резисторы), подлежащие экранированию. По периметру углубления создают переходные отверстия под вертикальные напыленные проводники, отстоящие друг от друга на расстоянии намного меньше длин волн паразитных излучений, вертикальными проводниками соединяют необходимые проводники в слоях печатных проводников с проводящим слоем на диэлектрической подложке либо с проводящей подложкой. Проводящий слой или проводящую подложку заземляют, с проводящим слоем или проводящей подложкой соединяют элементы в углублении, требующие заземления. В углублении соединяют активные и пассивные элементы с проводниками с помощью микросварки, наконец, проводники с помощью токопроводящего клея соединяют с крышкой из токопроводящей резины.

Однако, недостатком известного технического решения является ограниченность диапазона частот, в рамках которого производится экранирование узлов, а также отсутствие возможности создания разных частотных каналов в одном модуле.

В свою очередь, заявленное техническое решение направлено на создание устройства экранирования электронных узлов в многослойной СВЧ плате, обеспечивающее возможность реализации, разночастотных СВЧ каналов для проведения сигналов одновременно без воздействия узлов разных частот друг на друга и упрощение конструкции в целом. Также задачей заявленного устройства является полное экранирование элементов электронного модуля на многослойной плате, как от внешних паразитных излучений, создаваемых элементами, не входящими в состав тракта, так и от внутренних ЭМИ, формируемых мощными элементами СВЧ тракта, в диапазоне частот от единиц герц до сотен гигагерц.

Для достижения технического результата устройство экранирования электронных узлов многослойной СВЧ платы от электромагнитного излучения представляет собой многослойную плату с N-проводящими слоями и переходными отверстиями, в которой формируются колодцы, на дно которых установлены активные (кристаллы) и пассивные элементы, подлежащие экранированию, при этом по периметру колодцев многослойной платы выполнены углубления, в виде замкнутой канавки, заполненные металлом, образуя барьерный экран, представляющий собой вертикальную металлизированную стенку, связанную с проводником потенциала «Земля». В вертикальной металлизированной стенке для высокочастотных дорожек в i-м проводящем слое выполнены экранирующие переходы – «рукава», которые представляют собой земляные полигоны, находящиеся в проводящих слоях под (i+1) и над (i-1) дорожкой и соединенные по всей длине высокочастотной дорожки барьерными экранами, расположенными на расстоянии равному зазору копланарной линии передач от высокочастотной дорожки, при этом барьерный экран и земляные полигоны выполнены из одного металла или сплава металлов.

На фиг. 1 схематично представлен общий вид устройства экранирования СВЧ узлов от электромагнитного излучения, на котором:

1 – многослойная плата;

2 – керамическая подложка (0,5 мм AlN);

3 – проводящие металлические слои;

4 – диэлектрические слои;

5 – переходные отверстия;

6 – колодец,

7 – вертикальная металлизированная стенка - барьерный экран;

8 – пассивные элементы, не требующие экранирования (резисторы, конденсаторы, индуктивности);

9 – активные (кристаллы) и пассивные элементы, нуждающиеся в экранировании

10 – зазор для копланарной линии;

11 – разварка СВЧ элементов;

12 – крышка для колодца 6;

13 – экранирующий переход – рукав;

14 – окна.

Сущность работы устройства заключается в следующем.

Устройство экранирования электронных узлов представляет собой многослойную плату 1 с установленными на нее активными (кристаллы) и пассивными (конденсаторы, индуктивности, резисторы) элементами. Многослойная плата 1 состоит из керамической подложки 2 толщиной 0,5 мм выполненной из нитрида алюминия (AlN), служащей теплоотводом, и последовательно нанесенных N проводящих металлических 3 и (N-1) диэлектрических 4 слоев. Проводящие металлические слои 3 нанесены на подложку 2 и на каждый диэлектрический слой 4, на которых в дальнейшем формируется топология, отвечающая схемотехническому рисунку и полигоны металла, несущие потенциал «Земля» (далее - земляные полигоны), причем земляные полигоны заполняют почти все оставшееся пространство на поверхности диэлектрического слоя 4.

На фиг.2 представлен общий вид колодца 6 сверху, с установленными в него элементами 9.

Межслойные электрические соединения выполнены с помощью переходных отверстий 5 в диэлектрике, причем соединения могут проводиться с любого слоя на любой. При этом, в плате сформированы колодцы 6, на дно которых установлены активные и пассивные элементы 9, требующие экранирования. Также, по периметру колодца 6 выполнена замкнутая полая область в виде канавок в диэлектрических слоях 4, заполненная металлом, соединенным с потенциалом «Земля», образуя сплошную металлическую стенку 7, которая является барьерным экраном (см. фиг. 1 и 3) для
элементов 9, установленных в колодец 6. Таким образом, барьерный экран 7 защищает электронные узлы 9, находящиеся в колодце 6, от любого ЭМИ, распространяющегося вне колодца. При этом барьерный экран 7 дополнительно защищает элементы схемы 8, находящиеся вне колодца, и элементы 9 находящиеся в соседних колодцах от паразитного излучения, формируемого мощными элементами в колодце 6.

Для подвода питания и управляющих сигналов к кристаллу, и отведения обработанной информации, в барьерном экране 7 выполнены неметаллизированные области – окна 14. Окна 14 используются для проведения всех низкочастотных дорожек сквозь барьерный экран 7. При этом количество и размер окон 14 должны быть минимально возможными для используемого конструктивного исполнения.

На фиг.3 схематично представлено продольное сечение многослойной платы 1 по i-м проводящему слою.

В вертикальной металлизированной стенке 7 для высокочастотных дорожек в i-м проводящем слое выполнены экранирующие переходы –
рукава 13 (см. фиг 3), которые представляют собой земляные полигоны, находящиеся в проводящих слоях под (i+1) и над (i-1) дорожкой и соединенные по всей длине высокочастотной дорожки барьерными экранами, расположенными на расстоянии равном зазору 10 копланарной линии передач от высокочастотной дорожки (см. фиг.2). При этом рукав 13 и стенка 7 выполнены из одного металла или сплава металлов для обеспечения наилучших СВЧ характеристик высокочастотной дорожки проведенной внутри рукава 13.

На сформированную плату установлены активные и пассивные элементы тракта, причем элементы, требующие экранирования 9, установлены в колодцы 6, а элементы, не требующие экранирования 8, установлены на верхнем проводящем слое. Установка элементов может проводится на токопроводящий клей, либо пайкой (пассивные поверхностные компоненты) и эвтектикой (активные и пассивные кристаллы). Далее проводится разварка кристаллов 11 на проводящий рисунок на всех проводящих слоях и над колодцем 6 устанавливается крышка 12, выполненная из токопроводящего материала, для экранирования и герметизации кристаллов.

Похожие патенты RU2713650C1

название год авторы номер документа
СПОСОБ ЭКРАНИРОВАНИЯ В ЭЛЕКТРОННОМ МОДУЛЕ 2015
  • Буянкин Андрей Викторович
  • Тарасов Валерий Леонидович
  • Пурыжинский Сергей Зиновьевич
RU2602835C9
Волновод с копланарно-волноводной согласующей линией передачи 2020
  • Сафронов Александр Николаевич
  • Корнилов Иван Сергеевич
RU2743070C1
РАДИОЭЛЕКТРОННЫЙ БЛОК С ВНУТРИПЛАТНОЙ ЭКРАНИРОВКОЙ 2004
  • Конаржевский И.К.
  • Бедрин И.Б.
  • Стегунов А.В.
  • Смирнов А.В.
  • Малинина Г.И.
  • Корулин В.Н.
  • Иванов В.Н.
  • Лапко А.В.
  • Устинов И.В.
  • Шебшаевич Б.В.
RU2260928C1
РАДИОЭЛЕКТРОННЫЙ БЛОК 2000
  • Ковита С.П.
  • Корулин В.Н.
  • Солдатенков А.Н.
  • Устинов И.В.
  • Иванов В.Н.
  • Малашин В.И.
  • Писарев С.Б.
  • Шебшаевич Б.В.
RU2175821C1
РАДИОЭЛЕКТРОННЫЙ БЛОК С ВНУТРИПЛАТНОЙ ЭКРАНИРОВКОЙ 2007
  • Кузин Геннадий Константинович
  • Михайлова Ирина Петровна
  • Сладкова Ирина Петровна
  • Седова Татьяна Александровна
  • Краснов Максим Александрович
  • Таймаскин Николай Васильевич
  • Гольман Сергей Юрьевич
  • Ермакова Ирина Геннадьевна
  • Яковлев Юрий Евгеньевич
  • Смирнов Петр Васильевич
RU2349058C1
РАДИОЭЛЕКТРОННЫЙ БЛОК 2001
  • Корулин В.Н.
  • Солдатенков А.Н.
  • Малашин В.И.
  • Иванов В.Н.
  • Писарев С.Б.
  • Шебшаевич Б.В.
RU2194375C1
Корпус СВЧ для изделия полупроводниковой электронной техники СВЧ 2020
  • Темнов Александр Михайлович
  • Дудинов Константин Владимирович
  • Воронин Алексей Анатольевич
RU2749572C1
РАДИОЭЛЕКТРОННЫЙ БЛОК С ВНУТРИПЛАТНОЙ ЭКРАНИРОВКОЙ 2004
  • Корулин В.Н.
  • Малинина Г.И.
  • Богданова Е.В.
  • Лапко А.В.
  • Устинов И.В.
  • Конаржевский И.К.
  • Бедрин И.Б.
  • Стегунов А.В.
  • Смирнов А.В.
  • Иванов В.Н.
  • Шебшаевич Б.В.
RU2261540C1
БЛОК ПРИЕМНИКА СИГНАЛОВ СПУТНИКОВЫХ РАДИОНАВИГАЦИОННЫХ СИСТЕМ 2001
  • Корулин В.Н.
  • Ковита С.П.
  • Солдатенков А.Н.
  • Иванов В.Н.
  • Петрова С.В.
  • Устинов И.В.
  • Нагаев Ф.И.
  • Шебшаевич Б.В.
RU2190941C1
РАДИОЭЛЕКТРОННЫЙ БЛОК 2001
  • Малашин В.И.
  • Корулин В.Н.
  • Солдатенков А.Н.
  • Иванов В.Н.
  • Писарев С.Б.
  • Шебшаевич Б.В.
RU2192108C1

Иллюстрации к изобретению RU 2 713 650 C1

Реферат патента 2020 года Устройство экранирования электронных узлов многослойной СВЧ платы от электромагнитного излучения

Изобретение относится к устройствам защиты СВЧ модулей от внешнего и внутреннего паразитного электромагнитного излучения (ЭМИ) и может быть использовано для экранирования узлов СВЧ модуля от любого ЭМИ. Техническим результатом является обеспечение реализации разночастотных СВЧ каналов для проведения сигналов одновременно без воздействия узлов разных частот друг на друга и упрощение конструкции в целом. Устройство экранирования электронных узлов многослойной СВЧ платы от ЭМИ представляет собой многослойную плату с N-проводящими слоями и переходными отверстиями, в которой формируются колодцы, на дно которых установлены активные (кристаллы) и пассивные элементы, подлежащие экранированию, при этом по периметру колодцев многослойной платы выполнены углубления, в виде замкнутой канавки, заполненные металлом, образуя барьерный экран, представляющий собой вертикальную металлизированную стенку, связанную с проводником потенциала «Земля». В вертикальной металлизированной стенке для высокочастотных дорожек в i-м проводящем слое выполнены экранирующие переходы – «рукава», которые представляют собой земляные полигоны, находящиеся в проводящих слоях под (i+1) и над (i-1) дорожкой и соединенные по всей длине высокочастотной дорожки барьерными экранами, расположенными на расстоянии, равном зазору копланарной линии передач от высокочастотной дорожки, при этом барьерный экран и земляные полигоны выполнены из одного металла или сплава металлов. 3 ил.

Формула изобретения RU 2 713 650 C1

Устройство экранирования электронных узлов многослойной СВЧ платы от электромагнитного излучения, представляющее собой многослойную плату с N-проводящими слоями и переходными отверстиями, в которой формируются колодцы, на дно которых установлены активные (кристаллы) и пассивные элементы, подлежащие экранированию, отличающееся тем, что

по периметру колодцев многослойной платы выполнено углубление в виде замкнутой канавки, заполненное металлом, образуя барьерный экран, представляющий собой вертикальную металлизированную стенку, связанную с проводником потенциала «Земля»,

в вертикальной металлизированной стенке для высокочастотных дорожек в i-м проводящем слое выполнены экранирующие переходы – рукава, которые представляют собой земляные полигоны, находящиеся в проводящих слоях под (i+1) и над (i-1) дорожкой и соединенные по всей длине высокочастотной дорожки барьерными экранами, расположенными на расстоянии, равном зазору копланарной линии передач от высокочастотной дорожки, при этом

барьерный экран и земляные полигоны выполнены из одного металла или сплава металлов.

Документы, цитированные в отчете о поиске Патент 2020 года RU2713650C1

СПОСОБ ЭКРАНИРОВАНИЯ В ЭЛЕКТРОННОМ МОДУЛЕ 2015
  • Буянкин Андрей Викторович
  • Тарасов Валерий Леонидович
  • Пурыжинский Сергей Зиновьевич
RU2602835C9
РАДИОЭЛЕКТРОННЫЙ БЛОК 2001
  • Малашин В.И.
  • Солдатенков А.Н.
  • Корулин В.Н.
  • Иванов В.Н.
  • Писарев С.Б.
  • Шебшаевич Б.В.
RU2188522C1
РАДИОЭЛЕКТРОННЫЙ БЛОК С ВНУТРИПЛАТНОЙ ЭКРАНИРОВКОЙ 2000
  • Ковита С.П.
  • Корулин В.Н.
  • Солдатенков А.Н.
  • Устинов И.В.
  • Иванов В.Н.
  • Малашин В.И.
  • Писарев С.Б.
  • Шебшаевич Б.В.
RU2172082C1
RU 2009145643 A, 27.06.2011
US 5677515 A, 14.10.1997
CN 105340133 A, 17.02.2016.

RU 2 713 650 C1

Авторы

Поймалин Владислав Эдуардович

Буянкин Андрей Викторович

Даты

2020-02-06Публикация

2019-03-19Подача