ИМИТАТОР СОЛНЕЧНОГО ИЗЛУЧЕНИЯ Российский патент 2020 года по МПК H01J61/00 

Описание патента на изобретение RU2713914C1

Область техники, к которой относится изобретение

Изобретение относится к электровакуумной, электронной и электроламповой промышленности и может быть использовано при испытании техники, предназначенной для работы в космическом пространстве.

Уровень техники

В уровне техники довольно много информации о спектральном составе солнечного излучения, но, пожалуй, наиболее полно она отображена в документе [статья Никитиной Е. «Спектр солнечного излучения: описание, особенности и интересные факты» / электронный ресурс: https://fb.ru/article/402299/spektr-solnechnogo-izlucheniva-opisanie-osobennosti-i-interesnyie-faktvy, опубл. 13.07.2018].

В силу специфики поставленной задачи, в рамках настоящего изобретения не рассматривается возможность генерации высокоэнергетичных (типа рентгеновских) частиц и дальнего длинноволнового (свыше 3000 нм) инфракрасного излучения, это отдельные задачи, решаемые иными способами.

Спектральный диапазон предмета инженерного поиска авторов настоящей заявки начинается от жесткого ультрафиолета, то есть ~200 нм и до средневолнового инфракрасного излучения (ИК) ~2500 нм.

Известны источники излучения, основной элемент которых - разрядная оболочка - выполнен из оптически прозрачного (в ультрафиолетовом (УФ), видимом (ВИ) и инфракрасном (ИК) излучении) материала. К подобным материалам относятся кварцевое стекло, искусственный сапфир и т.п.[Рохлин Г.Н. Разрядные источники света / 2-е изд., перераб. и доп. - М.: Энергоатомиздат, 1991. - 720 с.]. Стандартные (типовые) источники излучения (ИИ) из подобных материалов обычно кроме ртути и инертного газа наполняются различного вида излучающими добавками (иодиды металлов и т.п.). Меняя состав добавок, условия их выхода в разряд, можно варьировать как их световые, так и спектральные характеристики, а значит и область их применения. Например, кварцевый ИИ с иодидом таллия излучает λ≈535 нм и используется для подводного освещения, так как эта длина волны соответствует «окну прозрачности» морской воды (лампы ДРТСф). Кварцевая лампа с излучающими добавками диспрозия, гольмия и туллия не только заполняет всю видимую часть спектра, но и спектр ее излучения «повторяет» спектральную кривую видности усредненного человеческого глаза, обеспечивая правильную цветопередачу при высокой световой отдаче - эти лампы используются в театральном освещении (лампы ДРИШ).

Однако простым подбором излучающих добавок [Зайдель А.Н. и др. Таблицы спектральных линий / Справочник. - М.: Наука, 1977. - 800 с.] не получить аналог солнечного излучения, так как интенсивность излучения различных линий очень различается у разных материалов. К тому же необходимо обеспечить выход в разряд элементов, очень значительно отличающихся по физическим и химическим свойствам; здесь способы и методы выведения их в разряд весьма отличаются друг от друга [Рохлин Г.Н. Разрядные источники света / 2-е изд., перераб. и доп. - М.: Энергоатомиздат, 1991. - 720 с.; Рохлин Г.Н Дуговым источникам света 200 лет. - М.: ВИГМА, 2001. - 72 с.]. И в этих ситуациях, технические решения находятся на основании инженерной интуиции и большого практического опыта.

Однако использовать один источник излучения эффективно и одновременно для трех спектральных диапазонов, имитируя солнечное излучение - подобная задача весьма непроста. Так как гораздо проще взять несколько отдельных источников для определенных спектральных интервалов, (например, ртутную лампу низкого давления, галогенную лампу накаливания и т.п.), «сложив» и «смешав» их лучистые потоки, можно приблизиться к поставленной цели, хотя в техническом плане подобный подход достаточно сложен и представляет собой отдельную инженерно-техническую задачу. Примеры таких решений из уровня техники известны, они используются на практике несмотря на их недостатки.

Наиболее близким техническим решением к предлагаемому изобретению (прототипом) является серная лампа [Фролова Т.Н. и др. Имитаторы солнечного излучения на основе серной лампы / Функциональная база наноэлектроники, 2011, с. 92-94]. Как следует из приведенного в этом документе рисунка, указанная серная лампа по спектру довольно близка к спектру солнца, особенно в видимом диапазоне, а также имеет достаточно высокие параметры как источник света, в связи с чем, в различного рода установках вполне может «заменять», то есть моделировать излучения Солнца.

Следует также заметить, что из всех существующих источников света, судя по спектральному составу излучения, серная лампа и в качественном, и количественном планах превосходит самые различные разновидности ламп накаливания и различные лампы типа ксеноновых высокого и сверхвысокого давления.

Однако у серной лампы для целей более точного моделирования спектрального состава излучения имеется ряд недостатков. К ним относятся:

- излучение в коротковолновой области УФ спектра значительно снижается (по отношению к солнечному), а в диапазонах λ=200-250 нм оно отсутствует;

- то же и для длинноволновой части ИК спектра: после λ=1000 нм излучение серной лампы равно нулю;

- техническая сложность электропитания СВЧ серного разряда.

Более того, как следует из документа [Зайдель А.Н. и др. Таблицы спектральных линий / Справочник. - М.: Наука, 1977. - 800 с., стр. 657-659], линии серы начинаются с 1045 нм, то есть в ближнем ИК-диапазоне, а УФ часть спектра хотя и имеет место, но по интенсивности (возможности возбуждения в разряде) весьма и весьма невелика. Однако у солнечного имитатора и ультрафиолетовая, и инфракрасная часть спектра должны быть представлены весьма эффективно (как следует из спектра солнца). Именно этим фактом и обусловлены поиски авторов настоящей заявки в достижении положительного эффекта.

Раскрытие сущности изобретения

Настоящее изобретение направлено на устранение недостатков прототипа.

Техническая проблема, решаемая в предлагаемом изобретении, состоит в расширении арсенала технических средств, представляющих собой имитатор солнечного излучения.

Технический результат настоящего изобретения заключается в создании источника излучения оптического диапазона с максимальным приближением его спектра к спектральному составу солнечного света.

Техническая проблема решается и технический результат достигается тем, что имитатор солнечного излучения оптического диапазона выполнен в виде металлогалогенной лампы высокого давления, содержащей кварцевую колбу, наполнение которой помимо ртути и инертного газа включает следующие излучающие компоненты в форме галогенидов, в вес. %:

железо 20-45

титан 10-15 цезий 15-20 таллий 10-15 германий 20-30

Осуществление изобретения

Дополненные спектра железа (210-265 нм, 271-312 нм) излучением титана (294-400 нм) позволяет заполнить практически весь УФ-диапазон.

Видимую часть спектра обеспечивают излучения таллия, цезия и ртути, причем именно подобное соотношение компонентов, позволяет получить характерное спектральное распределение.

Особенностью предлагаемого в настоящем изобретении наполнения является то, что некоторые добавки вводятся в виде иодидов, некоторые в виде хлоридов, а иные требуют использования микрокатализаторов.

Инфракрасный диапазон обеспечивается излучением цезия, таллия и германия (цезий - 2425, 1470, 1360, 917, 874, 852, 794 нм; таллий излучает кроме 535 нм в УФ-диапазоне - 200, 221, 277, 292, 352, 378 нм и ИК линии - 1151 и 1301 нм).

Излучение германия «усиливает» средний ИК-диапазон линиями 1721, 1676, 1482, 1239, 1040 нм.

Особенностью заявленной лампы является то, что:

- цезий, таллий, железо вводятся в виде иодидов;

- титан и германий вводятся в виде хлоридов;

- и ртуть, и инертный газ также имеют линии излучения в ультрафиолетовой, видимой и инфракрасной областях спектра.

Примеры конкретного наполнения:

Металлогалогенная лампа диаметром 22 мм и межэлектродным расстоянием 110 мм с вольфрамовыми электродами наполнена:

При приложенной электрической мощности в 3 кВт напряжения на лампе (работающей с индуктивным балластом) составило 225 В, ток 15,1 А, напряжение сети 380 В. Спектр излучения приведен на фиг.1.

Измерения проводились спектрометром AVantes, Ava Spec - ULS 3648 N 1309090 U1. В измерениях ИК-диапазона использовался прибор «ТКА-ПКМ» с датчиком чувствительности 800-2500 нм. Плотность излучения ИК-диапазона составила ~300 мВт/м2.

Для подтверждения выбранных диапазонов излучающих компонентов была изготовлена лампа с галогенидами железа - 15%, титана - 9%, цезия - 15%, талия -10% и германия - 20% (все основные электрические и геометрические характеристики такие же, как и у приведенного выше образца), при этом спектр излучения явно обеднен ультрафиолетом (см. фиг. 2).

При этом, «обедняя» излучающий состав цезием и германием ниже минимальных значений, приведенных в настоящей заявке, снижаем плотность излучения ИК-диапазона менее 60 мВт/м2 при тех же характеристиках лампы.

При больших значениях галогенидов излучающих добавок на внутренней поверхности разрядной оболочки появляется непрозрачный налет из неиспаренного в разряд галогена, то есть лампа перестает выполнять свои функции, а именно - излучать в широком спектральном диапазоне, в том числе и в видимом (см. фиг. 3).

Похожие патенты RU2713914C1

название год авторы номер документа
Лампа для подводного освещения 2020
  • Микаева Анжела Сергеевна
  • Микаева Светлана Анатольевна
  • Петренко Николай Юрьевич
  • Петренко Юрий Петрович
  • Комаров Владимир Александрович
RU2751219C1
УЛЬТРАФИОЛЕТОВАЯ СВЧ ЛАМПА 2018
  • Микаева Светлана Анатольевна
  • Микаева Анжела Сергеевна
  • Петренко Юрий Петрович
  • Петренко Николай Юрьевич
  • Комаров Владимир Александрович
RU2680821C1
МЕТАЛЛОГАЛОГЕННАЯ ЛАМПА ДЛЯ ПРИВЛЕЧЕНИЯ РЫБЫ 1992
  • Волков И.Ф.
  • Ботанцин В.Н.
  • Аббакумов А.Б.
RU2033654C1
Металло-галогенная лампа для имитаторов солнечного излучения 1977
  • Нарайкина Галина Алексеевна
  • Сарычев Генрих Сергеевич
  • Прикупец Леонид Борисович
  • Гаврилкина Галина Николаевна
  • Буханов Юрий Александрович
SU661651A1
МЕТАЛЛОГАЛОГЕННАЯ ЛАМПА 1992
  • Минаев И.Ф.
RU2040827C1
Металлогалоидная лампа 1981
  • Сарычев Генрих Сергеевич
  • Нарайкина Галина Алексеевна
  • Прикупец Леонид Борисович
  • Гаврилкина Галина Николаевна
SU997137A1
Разрядная лампа 1990
  • Петренко Николай Петрович
  • Петренко Юрий Петрович
  • Литвинов Виктор Семенович
SU1721664A1
МЕТАЛЛОГАЛОГЕННАЯ ЛАМПА 1995
  • Ашурков С.Г.
  • Сарычев Г.С.
RU2084045C1
Металлогалогенная лампа для облучения растений 1991
  • Волков Игорь Федорович
  • Ермошин Вячеслав Анатольевич
  • Пинясов Борис Васильевич
  • Ивченко Игорь Анатольевич
SU1774393A1
Металлогалогенная лампа 1983
  • Гаврилкина Галина Николаевна
  • Гусейнов Микаил Беюкович
  • Иванына Богдан Михайлович
  • Пахольчук Василий Алексеевич
  • Приймыч Богдан Степанович
  • Прикупец Леонид Борисович
  • Сарычев Генрих Сергеевич
SU1103304A1

Иллюстрации к изобретению RU 2 713 914 C1

Реферат патента 2020 года ИМИТАТОР СОЛНЕЧНОГО ИЗЛУЧЕНИЯ

Изобретение относится к электровакуумной, электронной и электроламповой промышленности и может быть использовано при испытании техники, предназначенной для работы в космическом пространстве. Техническим результатом является обеспечение создания источника излучения оптического диапазона с максимальным приближением его спектра к спектральному составу солнечного света. Имитатор солнечного излучения оптического диапазона выполнен в виде металлогалогенной лампы высокого давления, содержащей кварцевую колбу, наполнение которой помимо ртути и инертного газа включает следующие излучающие компоненты в форме галогенидов (в вес.%): 20-45% железа, 10-15% титана, 15-20% цезия, 10-15% таллия, 20-30% германия. 3 ил.

Формула изобретения RU 2 713 914 C1

Имитатор солнечного излучения оптического диапазона, отличающийся тем, что выполнен в виде металлогалогенной лампы высокого давления, содержащей кварцевую колбу, наполнение которой помимо ртути и инертного газа включает следующие излучающие компоненты в форме галогенидов, в вес.%:

железо 20-45 титан 10-15 цезий 15-20 таллий 10-15 германий 20-30

Документы, цитированные в отчете о поиске Патент 2020 года RU2713914C1

ФРОЛОВА Т.Н
и др
"Имитаторы солнечного излучения на основе серной лампы"
Функциональная база наноэлектроники, 2011, с
Автоматический огнетушитель 0
  • Александров И.Я.
SU92A1
Металлогалогенная лампа 1989
  • Кириллова Валентина Михайловна
  • Конев Василий Михайлович
  • Минаев Иван Федорович
  • Прикупец Леонид Борисович
  • Чистяков Олег Дмитриевич
SU1725291A1
Металло-галогенная лампа для имитаторов солнечного излучения 1977
  • Нарайкина Галина Алексеевна
  • Сарычев Генрих Сергеевич
  • Прикупец Леонид Борисович
  • Гаврилкина Галина Николаевна
  • Буханов Юрий Александрович
SU661651A1
GB 1190833 A, 06.05.1970
Бульдозерное оборудование 1980
  • Баловнев Владилен Иванович
  • Ермилов Александр Борисович
  • Карошкин Александр Анисимович
  • Попов Владимир Григорьевич
SU899775A1
WO 9423441 A1, 13.10.1994.

RU 2 713 914 C1

Авторы

Микаева Светлана Анатольевна

Микаева Анжела Сергеевна

Бойчук Максим Иванович

Петренко Юрий Петрович

Комаров Владимир Александрович

Даты

2020-02-11Публикация

2019-08-13Подача