Изобретение относится к области геофизических средств исследования Земли, а именно электромагнитных исследований (разведочной геофизики), и может быть использовано для оценки температуры до глубин ниже забоя пробуренных скважин.
Наиболее близким аналогом предлагаемого способа является способ прогноза температуры земных недр по детерминанту кажущейся электропроводности, определяемой по результатам магнитотеллурических зондирований в окрестности пункта осуществления прогноза (см. Спичак В.В., Захарова O.К. "Электромагнитный геотермометр", М., Издательство Научный мир, 2013, патент РФ №2326413, опубл. 10.06.2008).
Недостатком известного способа следует признать тот факт, что используемые с этой целью профили электропроводности в окрестности скважин зачастую существенно отличаются от электрокаротажа в самих скважинах, что ставит под сомнение точность такого прогноза температуры на глубинах ниже ее забоя.
Техническая проблема, решаемая с использованием разработанного способа, состоит в построении уточненных прогнозных оценок температуры на глубинах ниже забоя скважин по электромагнитным данным, измеренным в их окрестности, и данным электрокаротажа в самих скважинах.
Технический результат, получаемый при реализации предложенного способа, состоит в осуществлении более точного прогноза температуры на глубинах ниже забоя скважин, что, в свою очередь, повысит достоверность оценки потенциала геотермальных ресурсов, а также даст возможность обнаруживать залежи углеводородов по создаваемым в их окрестности температурным аномалиям.
Для достижения указанного технического результата предложено использовать разработанный способ прогноза температуры на глубинах ниже забоя скважин. Согласно разработанному способу на поверхности Земли в окрестности пробуренных скважин, для которых известны данные электрокаротажа, измеряют горизонтальные компоненты естественного магнитотеллурического поля в интервале частот, достаточном для проникновения поля на глубину, до которой необходимо осуществить прогноз температуры. Затем по значениям построенного импеданса проводят одномерную инверсию данных, в результате которой в точке измерения поля строят вертикальный профиль удельного электрического сопротивления, причем значения сопротивления определены для точек измерения температуры в скважине, по построенному в окрестности скважины профилю удельного сопротивления, а также по данным электрокаротажа в самой скважине строят профиль псевдо-электрокаротажа до заданной глубины с использованием предварительно обученной первой искусственной нейросети соответствию построенного в окрестности скважины профиля удельного сопротивления и каротажных данных в самой скважине, а затем с использованием обученной нейросети выполняют прогноз псевдо-электрокаротажа на глубинах ниже забоя скважины по данным удельного электрического сопротивления в ее окрестности на этих глубинах, затем проводят обучение второй нейросети на соответствии данных электро- и термокаротажа в самой скважине, после чего с ее использованием строят прогнозную кривую температуры ниже забоя скважины по построенному на первом этапе псевдо-электрокаротажу.
Разработанный способ осуществляют следующим образом. На поверхности Земли в окрестности пробуренных скважин, для которых имеются данные электрокаротажа, измеряют горизонтальные компоненты естественного электромагнитного (магнитотеллурического) поля в интервале частот, достаточном для проникновения поля на глубину, до которой необходимо осуществить прогноз температуры. Если до этой глубины известно распределение удельного сопротивления пород, то минимальную и максимальную частоты можно оценить из формулы для скин-слоя проникновения поля в среду где h - глубина, представляющая интерес, μ - магнитная проницаемость (в отсутствии магнитных аномалий равная магнитной проницаемости вакуума μ=μ0=4π×10-7 Г/м), ρ - априорное удельное сопротивление среды в точке измерения поля, ω - частота). Если распределение удельного сопротивления пород неизвестно, то можно использовать диапазон частот, характерный для стандартной электроразведочной электромагнитной аппаратуры, например, для часто используемой в России станции Phoenix MTU-5. После стандартной обработки измеренных временных рядов данных (см., например, Varentsov, Arrays of simultaneous electromagnetic soundings: design, data processing and analysis. In: Electromagnetic Sounding of the Interior (Ed. V. Spichak), Elsevier, Amsterdam, 2006) с использованием Фурье-преобразования получают значения в частотной области, и по двум поляризациям поля в первичном поле определяют компоненты тензора импеданса из формулы:
Затем по значениям проводят одномерную инверсию (например, согласно алгоритму, приведенному, в [Constable et al., inversion: A practical algorithm for generating smooth models from electromagnetic sounding data: Geophysics, 1987, 52(3), 289-300], в результате которой в точке измерения поля строят вертикальный профиль удельного электрического сопротивления (при этом важно, чтобы его значения были определены, в частности, в точках измерения температуры в скважине).
По построенному в окрестности скважины профилю удельного сопротивления, а также по данным электрокаротажа в самой скважине строят профиль псевдо-электрокаротажа до заданной глубины. Для этого искусственную нейросеть (см., например [Хайкин С. Нейронные сети. 2-е изд., испр.: Пер. с англ. - М.: ООО «И.Д. Вильямс», 2006. - 1104 с.]) обучают соответствию построенного в окрестности скважины профиля удельного сопротивления и каротажных данных в самой скважине, а затем обученную таким образом нейросеть используют для прогноза псевдо-электрокаротажа на глубинах ниже забоя скважины по данным удельного электрического сопротивления в ее окрестности на этих глубинах.
На втором этапе проводят обучение второй нейросети на соответствии данных электро- и термокаротажа в самой скважине, а затем с ее помощью строят прогнозную кривую температуры ниже забоя скважины по построенному на первом этапе псевдо-электрокаротажу.
В качестве примера приведен электромагнитный прогноз температуры на глубинах ниже забоя скважин для двух скважин, пробуренных на Бишкекском геодинамическом полигоне (северный Тянь-Шань).
На Фиг. 1 и Фиг. 2 показаны кривые электрокаротажа (Rw), профили удельного электрического сопротивления (RMT), определенного с помощью одномерной инверсии магнитотеллурических данных, измеренных в их окрестности, и псевдо-электрокаротаж спрогнозированный на нижние половины глубин скважин для скважин 1 и 2, соответственно. На Фиг. 3 и 4 результаты прогноза температуры на нижние половины скважин 1 и 2 с помощью предложенного способа (кривые с индексом 2) сравниваются с результатами прогноза только по данным электрокаротажа Rw (кривые с индексом 1), только по данным удельного сопротивления RMT (кривые с индексом 3) и исходными термограммами.
В Таблице 1 приведены относительные ошибки прогноза температуры на нижние половины глубин скважин в %.
Как видно из Таблицы 1, применение предлагаемого способа (2) минимизирует ошибки прогноза и делает его менее зависящим от геологических неоднородностей в окрестности скважин. Высокая относительная точность прогноза температуры позволит реализовывать на практике оптимальные стратегии бурения разведочных скважин и существенно экономить на соответствующих затратах [Spichak V.V. A new strategy for geothermal exploration drilling based on using of an electromagnetic sounding data // Expanded Abstr. Int. Workshop on High Entalphy Geothermal Systems. San-Bemardino, California. 2013; Spichak V.V. Reduce geothermal exploration drilling costs: pourquoi pas?! // Expanded Abstr. D-GEO-D Conference, Paris, France, 2014].
название | год | авторы | номер документа |
---|---|---|---|
Способ прогноза открытой пористости на глубины ниже забоя скважин | 2018 |
|
RU2696669C1 |
Способ прогноза открытой пористости в пространстве между скважинами | 2019 |
|
RU2717740C1 |
СПОСОБ ОЦЕНКИ ТЕМПЕРАТУРЫ В НЕДРАХ ЗЕМЛИ | 2006 |
|
RU2326413C1 |
КОМПЛЕКС ДЛЯ ПОИСКОВО-РАЗВЕДОЧНЫХ РАБОТ НА НЕФТЬ И ГАЗ В СЛОЖНОПОСТРОЕННЫХ РАЙОНАХ С РАЗВИТОЙ СОЛЯНОКУПОЛЬНОЙ ТЕКТОНИКОЙ С КАРТИРОВАНИЕМ КРОВЛИ СОЛИ И ПОДСОЛЕВЫХ ОТЛОЖЕНИЙ И КОМПЬЮТЕРНО-ТЕХНОЛОГИЧЕСКИЙ КОМПЛЕКС (КТК) ДЛЯ НЕГО | 2014 |
|
RU2594112C2 |
СПОСОБ ПОИСКА, РАЗВЕДКИ, ИССЛЕДОВАНИЯ И СОЗДАНИЯ МОДЕЛИ МЕСТОРОЖДЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ | 2001 |
|
RU2206911C2 |
УСТРОЙСТВО СЕЙСМОРАЗВЕДКИ 2D ИЛИ 3D, ЭЛЕКТРОРАЗВЕДКИ И ГИС ДЛЯ ПОВЫШЕНИЯ НАДЕЖНОСТИ КАРТИРОВАНИЯ КРОВЛИ СОЛИ И ДЛЯ ПРОГНОЗА НЕФТЕГАЗОНОСНОСТИ ПОДСОЛЕВЫХ ОТЛОЖЕНИЙ В РАЙОНАХ С РАЗВИТОЙ СОЛЯНОКУПОЛЬНОЙ ТЕКТОНИКОЙ | 2015 |
|
RU2595327C1 |
Способ трехмерного сейсмического районирования литосферы | 2019 |
|
RU2730419C1 |
Способ управления добычей нефти на зрелом обособленном нефтяном месторождении | 2018 |
|
RU2701761C1 |
Способ определения удельного электрического сопротивления терригенных нефтяных коллекторов по данным электрокаротажа субвертикальных скважин с использованием искусственных нейронных сетей | 2021 |
|
RU2774819C1 |
Способ бурения горизонтальной скважины | 2023 |
|
RU2806206C1 |
Изобретение относится к области геофизики и может быть использовано для оценки температуры до глубин ниже забоя пробуренных скважин. Сущность: на поверхности Земли в окрестности пробуренных скважин, для которых известны данные электрокаротажа, измеряют горизонтальные компоненты естественного магнитотеллурического поля в интервале частот, достаточном для проникновения поля на глубину, до которой необходимо осуществить прогноз температуры. По двум поляризациям поля в первичном поле определяют компоненты тензора импеданса . Затем по значениям проводят одномерную инверсию, в результате которой в точке измерения поля строят вертикальный профиль удельного электрического сопротивления. Значения сопротивления определены для точек измерения температуры в скважине. По построенному в окрестности скважины профилю удельного сопротивления, а также по данным электрокаротажа в самой скважине строят профиль псевдоэлектрокаротажа до заданной глубины с использованием предварительно обученной первой искусственной нейросети соответствию построенного в окрестности скважины профиля удельного сопротивления и каротажных данных в самой скважине. Затем с использованием обученной нейросети выполняют прогноз псевдоэлектрокаротажа на глубинах ниже забоя скважины по данным удельного электрического сопротивления в ее окрестности на этих глубинах. Проводят обучение второй нейросети на соответствии данных электро- и термокаротажа в самой скважине, после чего с ее использованием строят прогнозную кривую температуры ниже забоя скважины по построенному на первом этапе псевдоэлектрокаротажу. Технический результат: повышение точности прогноза температуры на глубинах ниже забоя скважин, что, в свою очередь, повысит достоверность оценки потенциала геотермальных ресурсов, а также даст возможность обнаруживать залежи углеводородов по создаваемым в их окрестности температурным аномалиям. 2 з.п. ф-лы, 1 табл., 4 ил.
1. Способ прогноза температуры на глубинах ниже забоя скважин, отличающийся тем, что на поверхности Земли в окрестности пробуренных скважин, для которых известны данные электрокаротажа, измеряют горизонтальные компоненты естественного магнитотеллурического поля в интервале частот, достаточном для проникновения поля на глубину, до которой необходимо осуществить прогноз температуры, и по двум поляризациям поля в первичном поле определяют компоненты тензора импеданса из формулы:
затем по значениям проводят одномерную инверсию, в результате которой в точке измерения поля строят вертикальный профиль удельного электрического сопротивления, причем значения сопротивления определены для точек измерения температуры в скважине, по построенному в окрестности скважины профилю удельного сопротивления, а также по данным электрокаротажа в самой скважине строят профиль псевдоэлектрокаротажа до заданной глубины с использованием предварительно обученной первой искусственной нейросети соответствию построенного в окрестности скважины профиля удельного сопротивления и каротажных данных в самой скважине, а затем с использованием обученной нейросети выполняют прогноз псевдо-электрокаротажа на глубинах ниже забоя скважины по данным удельного электрического сопротивления в ее окрестности на этих глубинах, затем проводят обучение второй нейросети на соответствии данных электро- и термокаротажа в самой скважине, после чего с ее использованием строят прогнозную кривую температуры ниже забоя скважины по построенному на первом этапе псевдоэлектрокаротажу.
2. Способ по п. 1, отличающийся тем, что при известности распределения удельного сопротивления пород до этой глубины, минимальную и максимальную частоты оценивают из формулы для скин-слоя проникновения поля в среду , где h - глубина, представляющая интерес, μ - магнитная проницаемость (в отсутствие магнитных аномалий равная магнитной проницаемости вакуума μ=μ0=4π×10-7 Г/м), ρ - априорное удельное сопротивление среды в точке измерения поля, ω - частота).
3. Способ по п. 1, отличающийся тем, что при неизвестности распределения удельного сопротивления пород используют диапазон частот, характерный для стандартной электроразведочной электромагнитной аппаратуры.
СПОСОБ ОЦЕНКИ ТЕМПЕРАТУРЫ В НЕДРАХ ЗЕМЛИ | 2006 |
|
RU2326413C1 |
Способ определения температурных полейНЕфТЕгАзОНОСНыХ СТРуКТуР | 1978 |
|
SU804823A1 |
Способ прогнозирования температур горных пород на неизученных глубинах в районах развития соленосных отложений | 1982 |
|
SU1073438A1 |
US 20130226460 А1, 29.08.2013 A1 | |||
СПОСОБ ОБЕСПЕЧЕНИЯ ОТРАЖАЮЩЕГО ПОКРЫТИЯ ДЛЯ ПОДЛОЖКИ ДЛЯ СВЕТОИЗЛУЧАЮЩЕГО УСТРОЙСТВА | 2012 |
|
RU2597253C2 |
В | |||
В | |||
СПИЧАК, О | |||
К | |||
ЗАХАРОВА, КОСВЕННАЯ ОЦЕНКА ТЕМПЕРАТУРЫ В ГЕОТЕРМАЛЬНОЙ ЗОНЕ ПО ЭЛЕКТРОМАГНИТНЫМ ДАННЫМ, Геофизика, 2008, N 4, с | |||
Устройство двукратного усилителя с катодными лампами | 1920 |
|
SU55A1 |
В | |||
В | |||
СПИЧАК, О | |||
К | |||
ЗАХАРОВА, ОЦЕНКА ГЛУБИННЫХ ТЕМПЕРАТУР В |
Авторы
Даты
2020-03-25—Публикация
2019-05-28—Подача