Изобретение относится к области оптоэлектроники и может быть использовано при изготовлении оптических приборов на основе оптических кристаллов.
Известны установки по определению качества оптических элементов, изготовленных на основе оптических кристаллов. Например: установка для исследования неоднородностей кристаллов, основанная на теневом методе обнаружения дефектов (метод Теплера), позволяющем обнаружить оптические неоднородности в прозрачных средах и дефекты отражающих поверхностей [1].
Наиболее близким к изобретению (прототипом) является установка, использующая интерференционную методику исследований неоднородностей кристалла [2]. Принцип ее действия заключается в том, что зондирующий пучок, проходящий через кристалл, фиксирует информацию об имеющихся в кристалле неоднородностях в виде искажений фазового фронта, которая затем отображается в картине интерференции с невозмущенным пучком. В тех местах кристалла, где неоднородности коэффициента преломления сильнее, фазовый фронт луча искажен больше и в соответствующем месте интерференционной картины полосы будут либо сильнее искривлены, либо сильнее сгущены. Поэтому по расстояниям между интерференционными полосами или по их искривлению можно рассчитать разность показателя преломления кристалла в точках, соответствующих наблюдаемым полосам.
Установки по измерению неоднородностей кристаллов [1, 2] позволяют определять неоднородности кристаллов, оптических элементов и других прозрачных тел, но при этом не позволяют определять тип дефектов и разграничивать внутренние и внешние дефекты.
Техническим результатом предлагаемого изобретения является определение внутренних и внешних оптических неоднородностей кристаллов, в том числе дефектов, чувствительных как к поляризации света, так и к внешнему электрическому полю.
Результат обеспечивает установка на основе интерферометра Маха-Цандера следующим образом.
1. С помощью коллиматора лазерный луч расширяется до необходимого размера.
2. Кристалл помещается в специальный держатель, находящийся в одном из плеч интерферометра Маха-Цандера.
3. Прикладывается внешнее электрическое поля к противоположным сторонам кристалла и (или) кристалл поворачивается вокруг оси, совпадающей с направлением зондирующего луча
4. С помощью цифровой фотокамеры, веб-камеры или экрана наблюдается интерференционная картина.
Установка отличается от прототипа тем, что:
Во-первых, в данной установке на кристалл подается напряжение ортогонально направлению распространения лазерного луча. Во-вторых, благодаря держателю образца имеется возможность поворачивать кристалл вокруг оси лазерного луча. Прикладываемое электрическое поле дает возможность определить дефекты, чувствительные к нему, а поворот кристалла соответственно позволяет определять дефекты, зависящие от направления колебаний вектора светового поля в кристалле. В результате установка позволяет не только определять дефекты кристаллов, но и классифицировать их типы.
Данная установка показана на фиг. 1, где: 1 - гелий-неоновый лазер (λ=0,6328 мкм); 2 - коллиматор; 3 - интерферометр Маха-Цандера; 4 и 11 - непрозрачные зеркала; 5 - кристалл, 6 - источник высокого напряжения; 7 - цанговый держатель кристалла; 8 и 12 - полупрозрачные зеркала; 9 - цифровая фотокамера; 10 - компьютер.
Установка работает следующим образом. Луч гелий-неонового лазера 1 с длиной волны λ=632,8 нм проходит сквозь коллиматор 2 и расширяется до необходимого размера, делится полупрозрачным зеркалом 12 на опорный и сигнальный лучи. Опорный луч отражается от непрозрачного зеркала 11 и попадает на полупрозрачное зеркало 8. Сигнальный луч, отражаясь от непрозрачного зеркала 4, проходит сквозь кристалл и интерферирует с опорным лучом после прохождения через полупрозрачное зеркало 8. Образец по форме представляет собой прямоугольный параллелепипед. Его ориентируют таким образом, чтобы ось вращения кристалла совпадала с центром просветленной грани, через которую проходит лазерный луч, а к двум другим противолежащим граням подведены электроды. Приложенное электрическое поле вызывает движение дефектов, что приводит к изменениям в интерференционной картине. Эти изменения также могут быть чувствительными к направлению колебаний вектора светового поля. Интерференционная картина попадает на цифровую фотокамеру 9 и фиксируется компьютером 10.
На фиг. 2 представлена конструкция цангового держателя образца. Здесь 13 - поворотное кольцо; 14 - цанговый зажим; 15 - электроды; 16 - кристалл, 17 - стойка.
Список использованных источников
1. Васильев Л. А., Теневые методы, М., 1968.
2. Зверев Г.М., Голяев Ю.Д. Лазеры на кристаллах и их применение, М., 1994
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРООПТИЧЕСКОГО КОЭФФИЦИЕНТА ОПТИЧЕСКИХ КРИСТАЛЛОВ С ВЫСОКОЙ ЭЛЕКТРОПРОВОДНОСТЬЮ | 2015 |
|
RU2604117C1 |
ДВУХЛУЧЕВОЙ ИНТЕРФЕРОМЕТР ДЛЯ ИЗМЕРЕНИЯ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ ИЗОТРОПНЫХ И АНИЗОТРОПНЫХ МАТЕРИАЛОВ | 1991 |
|
RU2102700C1 |
СПОСОБ ДИЛАТОМЕТРИИ | 2014 |
|
RU2559797C1 |
Интерференционное устройство для контроля линз | 1990 |
|
SU1758423A1 |
Устройство контроля качестваКРиСТАлличЕСКиХ лиНз | 1978 |
|
SU836764A1 |
СПОСОБ РЕГИСТРАЦИИ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ ЗЕМЛИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 1995 |
|
RU2094761C1 |
Устройство для измерения показателя преломления фазовых сред | 1986 |
|
SU1323926A1 |
Лазерно-интерференционный донный сейсмограф | 2017 |
|
RU2653099C1 |
Лазерный интерферометр для измерения динамических деформаций образцов | 1983 |
|
SU1272105A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МИКРОРЕЛЬЕФА ОБЪЕКТА И ОПТИЧЕСКИХ СВОЙСТВ ПРИПОВЕРХНОСТНОГО СЛОЯ, МОДУЛЯЦИОННЫЙ ИНТЕРФЕРЕНЦИОННЫЙ МИКРОСКОП ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА | 2001 |
|
RU2181498C1 |
Изобретение относится к области оптоэлектроники и может быть использовано при изготовлении оптических приборов на основе оптических кристаллов. Заявленная установка по определению степени дефектности оптических элементов методом лазерной интерферометрии включает в себя гелий-неоновый лазер, коллиматор, интерферометр Маха-Цандера, в одно из плеч которого установлен исследуемый образец. При этом держатель образца представляет собой цанговый зажим из диэлектрического материла, позволяющий поворачивать образец вокруг оси, совпадающей с лазерным лучом, проходящим через образец, а также подавать напряжение на противоположные грани образца с целью выявления дефектов, чувствительных к направлению поляризации света и приложенному электрическому полю. Технический результат - определение внутренних и внешних оптических неоднородностей кристаллов, в том числе дефектов чувствительных как к поляризации света, так и к внешнему электрическому полю. 2 ил.
Установка по определению степени дефектности оптических элементов методом лазерной интерферометрии, включающая в себя гелий-неоновый лазер, коллиматор, интерферометр Маха-Цандера, в одно из плеч которого установлен исследуемый образец, отличающаяся тем, что держатель образца представляет собой цанговый зажим из диэлектрического материла, позволяющий поворачивать образец вокруг оси, совпадающей с лазерным лучом, проходящим через образец, а также подавать напряжение на противоположные грани образца с целью выявления дефектов, чувствительных к направлению поляризации света и приложенному электрическому полю.
Мельник К.П | |||
Интерферометр Маха-Цандера для исследования электрооптического эффекта в нелинейных кристаллах [Текст]: доклад/ К.П | |||
Мельник, М.И | |||
Способ приготовления лака | 1924 |
|
SU2011A1 |
- Томск: В-Спектр | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
ФОРМА ДЛЯ БРИКЕТОВ | 1919 |
|
SU286A1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРООПТИЧЕСКОГО КОЭФФИЦИЕНТА ОПТИЧЕСКИХ КРИСТАЛЛОВ С ВЫСОКОЙ ЭЛЕКТРОПРОВОДНОСТЬЮ | 2015 |
|
RU2604117C1 |
УЧЕБНЫЙ ИНТЕРФЕРЕНЦИОННЫЙ ПРИБОР С КРИСТАЛЛОМ ИСЛАНДСКОГО ШПАТА | 2001 |
|
RU2219490C2 |
US 20100290055 A1, 18.11.2010 | |||
CN 102621110 A, 01.08.2012 | |||
US |
Авторы
Даты
2020-03-30—Публикация
2019-07-17—Подача