ВАКУУМНЫЙ РЕНТГЕНОВСКИЙ ДИОД ДЛЯ РЕГИСТРАЦИИ МЯГКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ Российский патент 2020 года по МПК G01T1/02 H01J35/00 H05G1/28 

Описание патента на изобретение RU2720214C1

Настоящее изобретение относится к области измерительной техники и может быть использовано для регистрации мягкого рентгеновского излучения (МРИ) в лабораторных и полигонных экспериментах.

Известен вакуумный рентгеновский диод (ВРД) для регистрации МРИ (Diagnosing x-ray power and energy of tungsten wire array z-pinch with a flat spectral response x-ray diode // Kun-lun Wang, Xiao-dong Ren, Xian-bin Huang et al, REVIEW OF SCIENTIFIC INSTRUMENTS 86, 113508, 2015), применяемый на лабораторной установке PTS. Известный ВРД содержит расположенный в вакууме золотой фотокатод и пленочный фильтр рентгеновского излучения, анодную сетку из никеля. Перед межэлектродным зазором, составляющем 1,2 мм, установлена матрица из тантала толщиной 130 мкм с отверстиями, диаметр которых составляет 50 мкм при межосевом расстоянии 200 мкм. Фильтр изготовлен из золота толщиной 400 нм. Для выравнивания спектральной чувствительности ВРД по всей поверхности фильтра выполнены углубления диаметром 5 мкм на 350 нм с шагом 11 мкм.

Известный ВРД дорог и технологически сложен в изготовлении. Его надежность не подтверждена эксплуатацией в сложных климатических условиях полигонных экспериментов. "Конструкция ВРД в работе не представлена.

Известен ВРД для регистрации импульсного МРИ, конструкция которого представлена в работе (Filtered x-ray diode diagnostics fielded on the Z accelerator for source power measurements // G. A. Chandler, C. Deeney, M. Cuneo et al, REVIEW OF SCIENTIFIC INSTRUMENTS, V. 70, N. 1, 1999, p. 561-565). Данный ВРД используется для измерения амплитудно-временных параметров импульсов МРИ на лабораторной установке Z. ВРД включает металлический корпус, представляющий собой внешнюю часть кабельного N-коннектора с выступом на внутренней поверхности; соосно установленный внутри корпуса при помощи осесимметричного тефлоиового изолятора фотокатод из стеклографита толщиной 2 мм; анодную сетку из никеля толщиной 5 мкм, расположенную параллельно фотокатоду с обеспечением межэлектродного зазора и контактирующую с корпусом; тефлоновое кольцо, которым фиксируется величина межэлектродного зазора, составляющая от 0,25 до 0,5 мм; а также металлическое кольцо, выполняющее функцию диафрагмы и защищающее тефлоновое кольцо от рентгеновского излучения; центральный проводник, соединенный с фотокатодом при помощи клеевого соединения, и прижим для фиксации элементов конструкции.

Известный ВРД дорог и технологически сложен в изготовлении. Надежность ВРД не подтверждена эксплуатацией в условиях полигонных экспериментов.

В представленной конструкции присутствуют следующие недостатки. Применяются материалы с высоким температурным коэффициентом расширения, например, тефлон и стеклографит, что может снижать надежность работы ВРД при изменении температуры окружающей среды в широком диапазоне. Клеевое соединение фотокатода с центральным проводником может ухудшать надежность электрического контакта и симметричность распределения напряженности электрического поля в межэлектродном зазоре. Замыкание межэлектродного зазора поверхностью тефлонового кольца при облучении потоком МРИ может приводить к искажению сигнала по причине развития пробоя вдоль поверхности диэлектрика. Проблема с пробоем частично решается использованием диафрагмы, закрывающей тефлоновое кольцо от рентгеновского излучения. Но диафрагма перекрывает часть рабочей поверхности фотокатода, и при этом ухудшается точность измерений, снижается чувствительность ВРД. Слабые контактные группы между анодной сеткой и корпусом, между фотокатодом и центральным проводником в известном ВРД могут ухудшать работу устройства в условиях вибраций и ударных нагрузок, оказываемых на ВРД вакуумными насосами и другим оборудованием полигона.

Совокупность признаков, наиболее близкая к совокупности существенных признаков изобретения, присуща известному ВРД для регистрации МРИ, конструкция которого представлена в работе (Soft x-ray diagnostics for pulsed power machines // G.C. Idzorek et al 10th IEEE Pulsed Power Conference, Albuquerque, NM July 10-13, 1995). Данный ВРД применялся для диагностики импульсов МРИ во взрывных экспериментах Procyon, MAGO и в экспериментах на лабораторной установке Pegasus. Конструкция ВРД по прототипу включает: металлический корпус с выступом на внутренней поверхности; соосно установленные внутри корпуса с обеспечением межэлектродного зазора фотокатод и анодную сетку; металлическое кольцо; центральный проводник, имеющий электрический контакт с фотокатодом; изолятор между фотокатодом и корпусом и прижим для фиксации элементов конструкции. Корпус при помощи резьбового соединения закреплен на герметичном TNC-коннекторе. В качестве прижима используется пружинная шайба и быстросъемное стопорное кольцо. При сравнительно низкой стоимости изготовления конструкция ВРД обеспечивает возможность оперативной замены и ремонта элементов ВРД, например, фильтров МРИ, разделенных шайбами.

Основным недостатком конструкции ВРД по прототипу является то, что величина межэлектродного зазора обеспечивается расположенным между электродами выступом изолятора. Поверхность выступа изолятора замыкает межэлектродный зазор по кратчайшему расстоянию. И, в отличие от аналога, в конструкции по прототипу нет диафрагмы, защищающей изолятор от рентгеновского излучения и предупреждающей пробой межэлектродного зазора вдоль поверхности выступа изолятора. Кроме того, недостатком прототипа является то, что его элементы изготовлены из материалов с высоким температурным коэффициентом расширения, например, изолятор изготовлен из тефлона, а фотокатод изготовлен из алюминиевого сплава. Анализ температурных деформаций свидетельствует об ограничении рабочего диапазона температур ВРД. Кроме того, слабые контактные группы между корпусом и анодной сеткой, а также между фотокатодом и центральным проводником, не обеспечивают высокой стойкости устройства к воздействию ударов и вибрации. Возможен дребезг контактов при использовании нескольких шайб в качестве держателей фильтров МРИ и стопорного кольца в качестве прижима. Кольцо поджимает анодную сетку к выступу изолятора через несколько шайб с фильтрами МРИ, что приводит к отсутствию хорошего контакта с корпусом по всему контуру экранировки и ухудшает защиту ВРД от электромагнитных помех. Еще одним недостатком конструкции по прототипу является жесткая привязка ВРД к вакуумной системе. Сложность замены ВРД может привести к потере измерительного канала. Кроме того, расположение герметичной прокладки на TNC-коннекторе не является оптимальным. Атмосферное давление выдавливает прокладку, создавая дополнительную нагрузку на резьбовое соединение коннектора. При этом. снижается качество вакуумного соединения, может понижаться точность юстировки ВРД.

Задачей, на решение которой направлено заявляемое изобретение, является создание вакуумного рентгеновского диода для регистрации мягкого рентгеновского излучения с улучшенными эксплуатационными характеристиками.

Техническим результатом заявляемого изобретения является повышение надежности работы ВРД, а также повышение технологичности обслуживания ВРД в условиях проведения взрывных и лабораторных экспериментов.

Технический результат достигается тем, что в вакуумном рентгеновском диоде для регистрации мягкого рентгеновского излучения, включающем металлический корпус с выступом на внутренней поверхности, соосно установленные внутри корпуса с обеспечением межэлектродного зазора фотокатод и анодную сетку, изолятор между фотокатодом и корпусом, металлическое кольцо, обеспечивающее контакт между корпусом и анодной сеткой, центральный проводник, соединенный с фотокатодом, и прижим, закрепленный на корпусе и фиксирующий элементы конструкции, новым является то, что центральный проводник соединен с фотокатодом с помощью резьбового соединения, изолятор зажат между выступами, выполненными на фотокатоде и на центральном проводнике, кольцо разделено на шайбу и втулку, между которыми зажата анодная сетка, причем шайба выполнена из металла с твердостью, меньшей твердости металла втулки, кроме того на внешней поверхности изолятора находится выступ, в который упирается втулка, выступ изолятора упирается в выступ на внутренней поверхности корпуса, на торцевой поверхности изолятора со стороны фотокатода выполнена проточка, прижим фиксирует элементы конструкции с помощью резьбового соединения, зажатого контрвинтами.

Внешняя поверхность выступа на фотокатоде и внутренняя поверхность втулки полностью или частично выполнены конусными для обеспечения защиты изолятора от рентгеновского излучения.

Фотокатод, центральный проводник, изолятор и втулка выполнены из материалов с низким температурным коэффициентом расширения.

В полигонных условиях ВРД могут долгое время находиться под действием солнечных лучей, а также могут контактировать с жидким азотом. Применение материалов с низким температурным коэффициентом расширения позволяет увеличить рабочий диапазон температур ВРД, что повышает надежность работы ВРД.

Требование к высокой надежности работы ВРД обусловлено как частым возникновением внештатных ситуаций, так и проявлением факторов штатного функционирования полигона: работой насосов, звуковыми волнами от взрывных работ или проверочных разрядов и так далее. Применение вибростойкой и ударозащищенной конструкции ВРД с резьбовыми соединениями основных контактных групп обеспечивает повышение надежности работы ВРД в условиях полигона. Резьбовое соединение прижима с корпусом дополнено контрвинтами, препятствующими самопроизвольному отворачиванию данного соединения. Центральный проводник соединен с фотокатодом с помощью надежного резьбового соединения. Изолятор зажат между выступами, выполненными на фотокатоде и на центральном проводнике. Кольцо разделено на шайбу и втулку, между которыми зажата анодная сетка, где шайба изготовлена из пластичного металла, твердость которого меньше твердости металла втулки, для улучшения контакта анодной сетки с корпусом, а втулка изготовлена из твердого металла для фиксации межэлектродного зазора.

Кроме того, надежность работы ВРД повышается за счет того, что на внешней поверхности изолятора находится выступ, упирающийся в выступ на внутренней поверхности корпуса, и в который с другой стороны упирается втулка. Это обеспечивает точную соосность электродов ВРД и улучшает распределение напряженности электрического поля в межэлектродном зазоре. Данное усовершенствование конструкции позволяет применять ВРД в полигонных и лабораторных экспериментах, где нужна повышенная точность измерений.

Межэлектродный зазор в ВРД по прототипу может пробиваться по кратчайшему расстоянию вследствие того, что облучаемая поверхность выступа изолятора находится под напряжением и ничем не защищена от прямого воздействия рентгеновского излучения. В заявляемой конструкции ВРД изолятор частично или полностью экранируется выступом фотокатода, и, при этом, не уменьшается площадь рабочей поверхности фотокатода, и не снижаются точность измерения и чувствительность ВРД. Чем больше ширина выступа и больше длина металлической втулки, тем лучше защищен изолятор и надежнее работает ВРД. Эффект экранировки может быть дополнительно усилен применением конусных поверхностей втулки и выступа фотокатода. Увеличенная поверхность изолятора, за счет проточки, выполненной на торце изолятора со стороны фотокатода, способствует повышению электропрочности изолятора и, как следствие, тоже увеличивает надежность работы ВРД.

Повышение технологичности обслуживания ВРД обеспечивается за счет использования конструкции, независимой от элементов вакуумной системы. При замене ВРД не ухудшается состояние контактных групп и сохраняется герметичность вакуумного ввода. Становится возможным расположение вакуумного ввода на фланце таким образом, чтобы атмосферное давление прижимало вакуумную прокладку к фланцу, разгружая резьбовое соединение.

На Фиг. 1 приведена конструкция ВРД, где: 1 - корпус, 2 - фотокатод, 3 - сеточный анод, 4 - изолятор, 5 - выступ на корпусе, 6 - шайба, 7 - втулка, 8 - центральный проводник, 9 - прижим, 10 - выступ на фотокатоде, 11 - выступ на центральном проводнике, 12 - выступ на изоляторе, 13 - проточка на изоляторе, 14 - фильтр МРИ, 15 - контрвинт, 16 - блок оправок с фильтром МРИ.

На Фиг. 2 представлена фотография ВРД, где: 1 - корпус, 9 - прижим, 15 - контрвинты, 16 - блок оправок с фильтром МРИ, 17 - винты для фиксации блока оправок.

На Фиг. 3 представлена конструкция ВРД с конусными элементами, защищающими изолятор, где: 18 - внутренняя поверхность втулки, 19 - внешняя поверхность выступа на фотокатоде.

На Фиг. 4 представлена характерная зависимость мощности импульса МРИ от времени, полученная при помощи заявляемого ВРД во взрывном эксперименте.

Заявляемый ВРД содержит металлический корпус 1 с выступом на внутренней поверхности 5, соосно установленные внутри корпуса с обеспечением межэлектродного зазора фотокатод 2 и анодную сетку 3, изолятор 4 между фотокатодом 2 и корпусом 1. Металлическое кольцо разделено на шайбу 6 и втулку 7, между которыми зажата анодная сетка 3, причем шайба 6 выполнена из металла с твердостью, меньшей твердости металла втулки 7. Металлическое кольцо обеспечивает контакт между корпусом 1 и анодной сеткой 3. Центральный проводник 8 соединен с фотокатодом 2 с помощью резьбового соединения. Изолятор 4 зажат между выступом 10 фотокатода и выступом 11, выполненным на центральном проводнике. На внешней поверхности изолятора 4 находится выступ 12, в который упирается втулка 7. Выступ 12 изолятора упирается в выступ 5 на внутренней поверхности корпуса. На торцевой поверхности изолятора со стороны фотокатода выполнена проточка 13. Прижим 9 закреплен на корпусе 1 и фиксирует элементы конструкции с помощью резьбового соединения, зажатого контрвинтами 15. Блок оправок 16 с фильтром МРИ 14 зафиксирован на прижиме 9 с помощью винтов 17.

Применяемый в заявляемой конструкции ВРД метод регистрации мощности МРИ основан на измерении тока в межэлектродном зазоре ВРД. При работе устройства регистрируемый сигнал МРИ ослабляется расстоянием и через фильтр 14 и анодную сетку 3 попадает на фотокатод 2. При воздействии МРИ с поверхностного слоя фотокатода 2 в результате фотоэффекта возникает эмиссия фото- и 5-электронов, которые под действием электрического поля поступают на анодную сетку 3 и образуют на выходе ВРД сигнал тока. Основную опасность для работы ВРД представляет облучение МРИ поверхности изолятора. В зависимости от расстояния и формы источника МРИ поверхность изолятора может облучаться в разной степени, вплоть до развития скользящего разряда. Аксиальный размер выступа 10 на фотокатоде 2 и втулки 7 достаточен для защиты от большей части падающего на изолятор излучения. При этом возможно изготовление выступа и втулки с конусными поверхностями 18 и 19 таким образом, что прямое излучение не попадает на изолятор 4. Облучаемая поверхность втулки 7 препятствует развитию пробоя, поскольку находится под положительным потенциалом. Кратчайшее расстояние между электродами вдоль поверхности изолятора увеличено при помощи проточки 13, что также предупреждает развитие пробоя. Втулка 7 упирается в выступ 12 при помощи посадки, практически исключающей несоосность электродной системы и улучшающей симметричность и однородность распределения напряженности электрического поля между электродами.

Надежность конструкции и технологичность сборки и обслуживания заявляемого ВРД обеспечиваются отсутствием клеевых соединений. Например, отсутствие паров клея способствует улучшению чистоты вакуумной среды в межэлектродном зазоре ВРД. Центральный проводник 8 и фотокатод 2 соединены друг с другом с помощью более технологичного резьбового соединения, проводимость которого больше и стабильнее в разных режимах эксплуатации.

В качестве примера изобретения на Фиг. 1 представлена конструкция разработанного и изготовленного устройства, прошедшего испытания во взрывных экспериментах. В представленном ВРД использован двухслойный оптически плотный поглощающий МРИ фильтр 14, изготовленный из нескольких слоев меди суммарной толщиной 1 мкм. Фотокатод 2 012 мм изготовлен из молибдена. Сеточный анод 3 изготовлен из никеля. Величина межэлектродного зазора составляет 1 мм. Геометрическая прозрачность сеточного анода 3 составляет 50% при толщине 50 мкм. Изолятор изготовлен из капролона с низким температурным коэффициентом расширения. В качестве корпуса использована часть кабельного разъема СР75-154ФВ. Шайба 6 изготовлена из отожженной меди толщиной 0,6 мм. Центральный проводник 8 и втулка 7 изготовлены из молибдена. Прижим 9 выполнен из латуни. Длина ВРД составляет 42 мм, внешний диаметр 26 мм.

Похожие патенты RU2720214C1

название год авторы номер документа
СПОСОБ КОНТРОЛЯ ВКЛЮЧЕНИЯ ВАКУУМНОГО РЕНТГЕНОВСКОГО ДИОДА В ИЗМЕРИТЕЛЬНУЮ ЦЕПЬ 2020
  • Данченко Николай Григорьевич
  • Репин Павел Борисович
  • Покровский Дмитрий Станиславович
  • Репьев Александр Георгиевич
  • Орлов Андрей Петрович
RU2737022C1
ИСТОЧНИК МЯГКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ НА ОСНОВЕ РАЗБОРНОЙ РЕНТГЕНОВСКОЙ ТРУБКИ 2012
  • Цедрик Павел Николаевич
  • Селявский Валерий Терентьевич
  • Репьев Александр Георгиевич
  • Репин Павел Борисович
RU2509389C1
ИМПУЛЬСНАЯ РЕНТГЕНОВСКАЯ ТРУБКА 2022
  • Юрьев Андрей Леонидович
  • Полиенко Григорий Анатольевич
  • Чернопазов Александр Александрович
  • Самородов Павел Сергеевич
RU2792844C1
РЕНТГЕНОВСКИЙ ИЗЛУЧАТЕЛЬ 2005
  • Щелкунов Геннадий Петрович
  • Олихов Игорь Михайлович
  • Петров Дмитрий Михайлович
  • Вилков Анатолий Николаевич
RU2286615C1
Катод рентгеновской трубки 2020
  • Малыгин Валерий Дмитриевич
  • Русин Михаил Юрьевич
  • Терехин Александр Васильевич
  • Харитонов Дмитрий Викторович
RU2745447C1
Источник рентгеновского излучения 2020
  • Русин Михаил Юрьевич
  • Малыгин Валерий Дмитриевич
  • Терехин Александр Васильевич
  • Алексеев Дмитрий Владимирович
RU2754863C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЭНЕРГИИ МЯГКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ В НЕСКОЛЬКИХ СПЕКТРАЛЬНЫХ ДИАПАЗОНАХ 2014
  • Репин Павел Борисович
  • Корнилов Сергей Юрьевич
  • Маркевцев Игорь Михайлович
  • Миронов Александр Семенович
RU2572065C1
ИМПУЛЬСНАЯ РЕНТГЕНОВСКАЯ ТРУБКА 2013
  • Бодров Александр Иванович
  • Меркулов Борис Петрович
  • Николюкин Юрий Валерьевич
RU2521436C1
РЕНТГЕНОВСКАЯ ТРУБКА 1999
  • Каниковский В.Б.
RU2144240C1
МИКРОМИНИАТЮРНЫЙ РЕНТГЕНОВСКИЙ ИЗЛУЧАТЕЛЬ 2018
  • Жуков Николай Дмитриевич
  • Хазанов Александр Анатольевич
  • Мосияш Денис Сергеевич
  • Ягудин Ильдар Тагирович
RU2678326C1

Иллюстрации к изобретению RU 2 720 214 C1

Реферат патента 2020 года ВАКУУМНЫЙ РЕНТГЕНОВСКИЙ ДИОД ДЛЯ РЕГИСТРАЦИИ МЯГКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ

Изобретение относится к области измерительной техники и может быть использовано для регистрации мягкого рентгеновского излучения (МРИ) в лабораторных и полигонных экспериментах. Технический результат - повышение надежности работы вакуумного рентгеновского диода и технологичности обслуживания вакуумного рентгеновского диода в условиях проведения взрывных и лабораторных экспериментов. Вакуумный рентгеновский диод для регистрации мягкого рентгеновского излучения содержит металлический корпус с выступом на внутренней поверхности, соосно установленные внутри корпуса с обеспечением межэлектродного зазора фотокатод и анодную сетку, изолятор между фотокатодом и корпусом, металлическое кольцо, обеспечивающее контакт между корпусом и анодной сеткой, центральный проводник, соединенный с фотокатодом, и прижим, закрепленный на корпусе и фиксирующий элементы конструкции. Центральный проводник соединен с фотокатодом с помощью резьбового соединения, изолятор зажат между выступами, выполненными на фотокатоде и на центральном проводнике, кольцо разделено на шайбу и втулку, между которыми зажата анодная сетка, причем шайба выполнена из металла с твердостью, меньшей твердости металла втулки. Кроме того, на внешней поверхности изолятора находится выступ, в который упирается втулка, выступ изолятора упирается в выступ на внутренней поверхности корпуса, на торцевой поверхности изолятора со стороны фотокатода выполнена проточка, прижим фиксирует элементы конструкции с помощью резьбового соединения, зажатого контрвинтами. 2 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 720 214 C1

1. Вакуумный рентгеновский диод для регистрации мягкого рентгеновского излучения, включающий металлический корпус с выступом на внутренней поверхности, соосно установленные внутри корпуса с обеспечением межэлектродного зазора фотокатод и анодную сетку, изолятор между фотокатодом и корпусом, металлическое кольцо, обеспечивающее контакт между корпусом и анодной сеткой, центральный проводник, соединенный с фотокатодом, прижим, закрепленный на корпусе и фиксирующий элементы конструкции, отличающийся тем, что центральный проводник соединен с фотокатодом с помощью резьбового соединения, изолятор зажат между выступами, выполненными на фотокатоде и на центральном проводнике, кольцо разделено на шайбу и втулку, между которыми зажата анодная сетка, причем шайба выполнена из металла с твердостью, меньшей твердости металла втулки, кроме того на внешней поверхности изолятора находится выступ, в который упирается втулка, выступ изолятора упирается в выступ на внутренней поверхности корпуса, на торцевой поверхности изолятора со стороны фотокатода выполнена проточка, прижим фиксирует элементы конструкции с помощью резьбового соединения, зажатого контрвинтами.

2. Вакуумный рентгеновский диод для регистрации мягкого рентгеновского излучения по п. 1, отличающийся тем, что внешняя поверхность выступа на фотокатоде и внутренняя поверхность втулки полностью или частично выполнены конусными для обеспечения защиты изолятора от рентгеновского излучения.

3. Вакуумный рентгеновский диод для регистрации мягкого рентгеновского излучения по п. 1, отличающийся тем, что фотокатод, центральный проводник, изолятор и втулка выполнены из материалов с низким температурным коэффициентом расширения.

Документы, цитированные в отчете о поиске Патент 2020 года RU2720214C1

IDZOREK G.C, Soft x-ray diagnostics for pulsed power machines, 10th IEEE Pulsed Power Conference, Albuquerque, NM July 10-13, 1995
РЕНТГЕНОВСКАЯ ТРУБКА 2005
  • Фурсей Георгий Николаевич
  • Широчин Леонид Александрович
  • Беспалов Петр Николаевич
RU2308781C2
ИСТОЧНИК РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ С СФОРМИРОВАННОЙ РАДИАЦИОННОЙ КАРТИНОЙ 1995
  • Марк Т. Динсмор
  • Кеннет Дж. Харт
  • Алан П. Слиски
  • Дональд О. Смит
  • Питер И. Оттингер
RU2155413C2
СЦИНТИЛЛЯЦИОННЫЙ ДЕТЕКТОР ДЛЯ РЕГИСТРАЦИИ ИМПУЛЬСНОГО МЯГКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ 2017
  • Репьев Александр Георгиевич
  • Покровский Владислав Станиславович
  • Репин Павел Борисович
  • Ибрагимов Марат Шавкатович
RU2643219C1
WO 2006104956 A3, 05.10.2006
Паровой затвор для шуровочных отверстий газогенераторов низкого давления 1957
  • Крейс М.А.
SU109143A1

RU 2 720 214 C1

Авторы

Репьев Александр Георгиевич

Данченко Николай Григорьевич

Репин Павел Борисович

Савченко Роман Васильевич

Даты

2020-04-28Публикация

2019-09-24Подача