ПНЕВМОГИДРАВЛИЧЕСКАЯ КАТАПУЛЬТА Российский патент 2020 года по МПК B64F1/06 

Описание патента на изобретение RU2721215C1

Изобретение относится к области авиационной техники, более конкретно к взлетным устройствам летательных аппаратов, преимущественно малоразмерных беспилотных аппаратов.

Для взлета малоразмерных беспилотных летательных аппаратов широко используются пусковые устройства типа катапульты, позволяющие обеспечить быстрый и эффективный взлет указанных летательных аппаратов с силовой установкой сравнительно небольшой мощности.

Важной особенностью запусков малоразмерных летательных аппаратов является обеспечение возможности их взлета на необорудованных площадках и в полевых условиях.

Известны устройства для взлета малоразмерных беспилотных летательных аппаратов с катапульты, оборудованной тележкой, перемещаемой по направляющим катапульты разгонным устройством (см. Исследования способов пуска дистанционно пилотируемых летательных аппаратов (перевод с английского Травкиной Л.П., Чубченко Е.Г.), ОНТИ МАИ, 1983; Испытание новой пусковой установки для ДПЛА. RAE trials of RPV launchers //Jane's deference weekly/ - 1985 / - v. 3. - №19; Журнал Aero Digest, December 1931; патентная заявка Великобритании №2132577). Эти устройства в целом могут быть охарактеризованы следующим образом.

Устройство содержит разгонную тележку, которая расположена на катапульте в стартовом положении. После ее разгона разгонным устройством до требуемой скорости летательный аппарат, установленный на тележке, отсоединяют от нее, а тележку тормозят.

Общим недостатком таких устройств является недостаточная надежность взлета летательного аппарата, обусловленная возможностью его контакта с элементами катапульты и тележки, возникающей в результате их взаимного относительного движения на близком расстоянии друг от друга.

В качестве прототипа принято известное из патента на изобретение RU 2373117 (опубликован 20.11.2009, БИ №32, МПК B64F 1/06) устройство катапульты для взлета летательного аппарата, содержащей разгонное устройство, выполненное в виде рабочего цилиндра с камерой для сжатого газа, внутри которого размещен поршень, фиксатор стартового положения, тормозное средство и узел стыковки с летательным аппаратом. Отличительной особенностью прототипа является то, что в одном торце рабочего цилиндра выполнено заправочное отверстие с обратным клапаном, между которым и поршнем образована указанная камера для сжатого газа, поршень имеет шток, выходящий за пределы рабочего цилиндра через отверстие в его торце, противоположном заправочному отверстию, возле этого торца в рабочем цилиндре размещено тормозное средство, на части штока, выходящей за пределы рабочего цилиндра, закреплен узел стыковки с летательным аппаратом, выполненный в виде пилона, на верхней части которого размещено средство для установки летательного аппарата, снабженное электромеханической системой для отделения летательного аппарата от пилона, кроме того, снаружи рабочего цилиндра жестко закреплен кронштейн, на котором установлен фиксатор стартового положения, выполненный в виде качалки, на одном из концов которой установлен ролик с втулкой из эластичного материала, а второй конец качалки представляет собой рукоятку для ее поворота, а на части штока, выходящей за пределы рабочего цилиндра, выполнен клык с нишей для взаимодействия с роликом качалки, помимо этого, снаружи на рабочем цилиндре установлены поворотные передние опоры с фиксаторами их рабочего положения и жестко закрепленная задняя опора. Каждая из поворотных передних опор установлена посредством трех степенного шарнира, содержащего сферу с отверстием, а фиксатор рабочего положения опоры содержит цилиндрический корпус с пазом и подвижный штифт, имеющий выходящий за пределы корпуса конец для взаимодействия с указанным отверстием сферы, а второй конец штифта, находящийся внутри корпуса, выполнен упирающимся в размещенную в торце пружину и имеющим рукоятку, выполненную с возможностью перемещения вдоль паза. Электромеханическая система отделения летательного аппарата от пилона содержит установленный на пилоне датчик ускорений, соединенный через контроллер с электроприводом для поворота кронштейна-фиксатора, взаимодействующего с ответным элементом летательного аппарата. Тормозное средство выполнено в виде витой пружины или пакета эластичного материала с отверстием для штока поршня.

В сравнении с рассмотренным выше аналогом, в прототипе достигается повышенная надежность срабатывания катапульты, а также оптимизированы массо-габаритные параметры, что особенно актуально при трансформировании катапульты при ее транспортировке и хранении. К критическому моменту прототипа следует отнести недостаточную величину броскового импульса.

Технический результат заявляемого изобретения заключается в повышении броскового импульса.

Техническая задача решается путем перехода к пневмогидравлическому принципу метания с последующей дозаправкой пускового баллона на начальной стадии «броска». Для этого предлагается устройство пневмогидравлической катапульты с дозаправкой пускового баллона, содержащей направляющую, в задней части которой жестко закреплен упор с механизмами фиксации и пусковой баллон с замками крепления летательного аппарата. Внутри пускового баллона организованы две полости -гидравлическая и пневматическая, соответственно снабженные средствами для подвода внутрь пускового баллона жидкости под давлением и газа под давлением, при этом пусковой баллон насажен на трубу, размещенную в гидравлической полости и внутри которой установлен свободно перемещающийся поршень, при этом труба жестко закреплена на упоре и внутренняя ее полость, через канал, выполненный в упоре, подключена к полости воздушного ресивера, снабженного средством подвода газа под давлением, при этом в воздушной полости пускового баллона установлены запальная свеча и топливная форсунка. Названные полости могут быть разделена перегородкой из упругого материала, например, резины.

Сравнение научно-технической и патентной документации на дату приоритета в основной и смежной рубриках МКИ показывает, что совокупность существенных признаков заявленного решения ранее не была известна, следовательно, оно соответствует условию патентоспособности "новизна".

Анализ известных технических решений в данной области техники показал, что предложенное устройство имеет признаки, которые отсутствуют в известных технических решениях, а использование их в заявленной совокупности признаков дает возможность получить новый технический результат, следовательно, предложенное техническое решение имеет изобретательский уровень по сравнению с существующим уровнем техники.

Предложенное техническое решение промышленно применимо, т.к. может быть изготовлено промышленным способом, работоспособно, осуществимо и воспроизводимо, следовательно, соответствует условию патентоспособности "промышленная применимость".

Другие особенности и преимущества заявляемого изобретения станут понятны из следующего детального описания, приведенного исключительно в форме не ограничивающего примера и со ссылкой на прилагаемые чертежи, иллюстрирующий предпочтительный вариант реализации, на которых схематично представлена заявляемая пневмогидравлическая катапульта с дозаправкой пускового баллона.

На фиг. 1 показан общий вид катапульты.

На фиг. 2 показаны механизмы фиксации в положениях «стоп» и «пуск».

На фиг. 3 показан рабочий механизм катапульты в разрезе.

На фиг. 4 показан процесс дозаправки пускового баллона водой на начальной стадии броска.

На фиг. 5 показан сход баллона с трубы и момент нарастания давления газа в результате взрыва топливовоздушной смеси.

Пневмогидравлическая катапульта содержит установленную под углом направляющую 1, в задней части которой жестко закреплен упор 2 с механизмами фиксации 3 в двух положениях «стоп» и «пуск». Задняя часть упора 2 соединена с воздушным ресивером 4. На направляющую 1 уложен пусковой баллон 5 с замками крепления 6 для фиксации «бросаемого» летательного аппарата 7. К передней части упора 2 крепится труба 8 внутри которой расположен свободно перемещающийся поршень 9. Внутренняя полость пускового баллона 5 может быть разделена мягкой резиновой перегородкой 10, отделяющей пневматическую (например, воздушную) полость 11 от гидравлической (например, водяной) 12. Задняя часть пускового баллона 5 выполнена с фланцем 13 за который осуществляется его фиксация на направляющей 1 и заднем упоре 2 механизмами фиксации 3. Полости 11 и 12 снабжены средствами для подвода внутрь пускового баллона 5 жидкости и газа под давлением. Пневматическая полость 11 снабжена заправочным клапаном 14, гидравлическая полость 12 снабжена заправочным клапаном 15, а воздушный ресивер 4 имеет заправочный клапан 16. В пневматическую полость И установлены топливная форсунка 17 и запальная свеча 18.

Работа осуществляется следующим образом.

Первая предпусковая операция - это снаряжение пускового баллона. Для этой цели он укладывается на направляющую 1 катапульты. За фланец 13 он плотно прижимается к упору 2. Далее через заправочный клапан 15 в него заливается установленный объем гидравлики (воды), а через заправочный клапан 14 производится наддув пневматической (воздушной) полости 11 воздухом высокого давления от отдельного источника. Ресивер 4, соединенный через канал 19 с наружной стороной поршня 9, через заправочный клапан 16 закачивается воздухом давлением на несколько атмосфер меньше, чем в воздушную полость 11. Далее заправочные клапаны 14, 15, 16 закрываются и начинается вторая операция.

Вторая операция - это установка беспилотного летательного аппарата 7 на пусковой баллон 5. Для этого на пусковом баллоне выполнены замки крепления 6 в которые устанавливается летательный аппарат 7.

Третий этап - это пуск. Запускается двигатель летательного аппарата 7. Двигатель (на чертежах не показан) прогревается и выходит на рабочий режим. Далее механизмы фиксации 3 переводятся в положение «пуск» и пусковой баллон 5 под действием давления воздуха в полости 11 начинает двигаться по направляющей 1, выдвигаясь из трубы 8. Это приводит к падению давления в полости 11 и тогда под действием давления в ресивере 4 поршень 9 начинает выталкивать воду из трубы 8 в водяную полость 12, тем самым производя дозаправку пускового баллона водой на начальной стадии броска. Эта фаза процесса представлена на фиг.4. На завершающей стадии выхода пускового баллона 5 с трубы 8 в воздушную полость 11 подается жидкое топливо через топливную форсунку 17 и от запальной свечи 18 производится взрыв топливовоздушной смеси, что вновь поднимает давление в воздушной полости 11. Резиновая перегородка 10 при этом может разрываться. Этот процесс изображен на фиг. 5. С момента срабатывания механизма фиксации 3 пусковой баллон 5, двигаясь по направляющей, 1 изначально разгоняется за счет давления в воздушной полости 11 передаваемого через воду полости 12 на поршень 9, далее после схода с трубы 8 разгон происходит от действия реактивной тяги выброса воды и в завершающей фазе от выброса сжатого газа, или в случае его дожигания от действия продуктов сгорания. Вместе с пусковым баллоном 5 разгоняется летательный аппарат 7. Время движения по направляющей может быть порядка 0,2 сек, еще столько же понадобиться для опорожнения пускового баллона от воды и газов после схода с направляющей катапульты. Далее пусковой баллон начинает терять набранную скорость и в этот момент происходит отсоединение летательного аппарата от баллона. Разогнанный летательный аппарат продолжает полет.

Разумеется, изобретение не ограничивается описанным примером его осуществления, показанным на прилагаемых фигурах. Остаются возможными изменения различных элементов либо замена их технически эквивалентными, не выходящие за пределы объема настоящего изобретения

Похожие патенты RU2721215C1

название год авторы номер документа
Двухконтурный эжекторный пульсирующий воздушно-реактивный двигатель 2020
  • Мигалин Константин Валентинович
  • Сиденко Кирилл Алексеевич
  • Сиденко Алексей Ильич
  • Мигалин Кирилл Константинович
RU2749083C1
ПУЛЬСИРУЮЩИЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ 2005
  • Мигалин Константин Валентинович
  • Сиденко Алексей Ильич
  • Мигалин Кирилл Константинович
RU2300004C2
ПУЛЬСИРУЮЩИЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ 2005
  • Мигалин Константин Валентинович
  • Сиденко Алексей Ильич
  • Мигалин Кирилл Константинович
RU2300005C2
Способ форсирования двухконтурного эжекторного пульсирующего воздушно-реактивного двигателя и форсированный двухконтурный эжекторный пульсирующий воздушно-реактивный двигатель 2020
  • Мигалин Константин Валентинович
  • Сиденко Кирилл Алексеевич
  • Мигалин Кирилл Константинович
RU2765672C1
Способ форсирования двухконтурного эжекторного пульсирующего воздушно-реактивного двигателя и форсированный двухконтурный эжекторный пульсирующий воздушно-реактивный двигатель 2021
  • Мигалин Константин Валентинович
  • Сиденко Кирилл Алексеевич
  • Мигалин Кирилл Константинович
RU2760339C1
СПОСОБ УВЕЛИЧЕНИЯ СИЛЫ ТЯГИ ПУЛЬСИРУЮЩЕГО ВОЗДУШНО-РЕАКТИВНОГО ДВИГАТЕЛЯ ВЕРТИКАЛЬНОГО ВЗЛЕТА (ВАРИАНТЫ) 2006
  • Мигалин Константин Валентинович
  • Сиденко Алексей Ильич
  • Мигалин Кирилл Константинович
RU2333378C2
Способ форсирования двухконтурного эжекторного пульсирующего воздушно-реактивного двигателя и форсированный двухконтурный эжекторный пульсирующий воздушно-реактивный двигатель 2020
  • Сиденко Кирилл Алексеевич
  • Мигалин Константин Валентинович
RU2754796C1
ПУЛЬСИРУЮЩИЙ ВОЗДУШНО-РЕАКТИВНЫЙ ДВИГАТЕЛЬ 2010
  • Мигалин Константин Валентинович
  • Сиденко Алексей Ильич
  • Мигалин Кирилл Константинович
  • Мусатов Сергей Игоревич
  • Ужегов Павел Николаевич
RU2435977C1
СПОСОБ ПОВЫШЕНИЯ РЕАКТИВНОЙ ТЯГИ БЕСКЛАПАННОГО ПУЛЬСИРУЮЩЕГО ВОЗДУШНО-РЕАКТИВНОГО ДВИГАТЕЛЯ 2007
  • Мигалин Константин Валентинович
  • Сиденко Алексей Ильич
  • Мигалин Кирилл Константинович
RU2429367C2
Способ форсирования двухконтурного эжекторного пульсирующего воздушно-реактивного двигателя и форсированный двухконтурный эжекторный пульсирующий воздушно-реактивный двигатель 2019
  • Мигалин Константин Валентинович
  • Сиденко Кирилл Алексеевич
RU2714463C1

Иллюстрации к изобретению RU 2 721 215 C1

Реферат патента 2020 года ПНЕВМОГИДРАВЛИЧЕСКАЯ КАТАПУЛЬТА

Изобретение относится к взлетным устройствам летательных аппаратов. Пневмогидравлическая катапульта с дозаправкой пускового баллона содержит направляющую, в задней части которой жестко закреплен упор с механизмами фиксации и пусковой баллон с замками крепления летательного аппарата. Внутри пускового баллона организованы две полости – гидравлическая (12) и пневматическая (11), соответственно снабженные средствами для подвода внутрь пускового баллона жидкости под давлением и газа под давлением. Пусковой баллон насажен на трубу (8), размещенную в гидравлической полости и внутри которой установлен свободно перемещающийся поршень (9), при этом труба (8) жестко закреплена на упоре и внутренняя ее полость через канал, выполненный в упоре, подключена к полости воздушного ресивера, снабженного средством подвода газа под давлением, при этом в воздушной полости пускового баллона установлены запальная свеча и топливная форсунка. Достигается повышение броскового импульса за счет перехода к пневмогидравлическому принципу метания с последующей дозаправкой пускового баллона на начальной стадии «броска». 1 з.п. ф-лы, 5 ил.

Формула изобретения RU 2 721 215 C1

1. Пневмогидравлическая катапульта, содержащая направляющую, в задней части которой жестко закреплен упор с механизмами фиксации и пусковой баллон с замками крепления летательного аппарата, отличающаяся тем, что, внутри пускового баллона организованы две полости - гидравлическая и пневматическая, соответственно снабженные средствами для подвода внутрь пускового баллона жидкости под давлением и газа под давлением, при этом пусковой баллон насажен на трубу, размещенную в гидравлической полости и внутри которой установлен свободно перемещающийся поршень, при этом труба жестко закреплена на упоре и внутренняя ее полость через канал, выполненный в упоре, подключена к полости воздушного ресивера, снабженного средством подвода газа под давлением, при этом в воздушной полости пускового баллона установлены запальная свеча и топливная форсунка.

2. Пневмогидравлическая катапульта по п. 1, отличающаяся тем, что полости пускового баллона разделены перегородкой из упругого материала, например резины.

Документы, цитированные в отчете о поиске Патент 2020 года RU2721215C1

КАТАПУЛЬТА ДЛЯ ВЗЛЕТА ЛЕТАТЕЛЬНОГО АППАРАТА 2008
  • Доулетов Игорь Ильясович
  • Уварин Владимир Леонидович
RU2373117C1
КАТАПУЛЬТА ДЛЯ ВЗЛЕТА ЛЕТАТЕЛЬНОГО АППАРАТА 2012
  • Громов Владимир Вячеславович
  • Гущин Константин Александрович
  • Липсман Давид Лазорович
  • Маякин Владимир Владимирович
  • Петров Игорь Яковлевич
  • Пикалин Сергей Александрович
  • Пикин Вадим Анатольевич
  • Тонкачев Владимир Викторович
  • Черноус Тимофей Александрович
RU2497725C1
ГИДРАВЛИЧЕСКИХ ТОРМОЗОВllATEHTliJТЕКН1^ЧЕС':;;Пfc'ibAPTcu^«ф>& llAicr 0
SU172944A1
US 6851647 B1, 08.02.2005
CN 0204489204 U, 22.07.2015.

RU 2 721 215 C1

Авторы

Мигалин Константин Валентинович

Сиденко Кирилл Алексеевич

Сиденко Алексей Ильич

Мигалин Кирилл Константинович

Даты

2020-05-18Публикация

2019-10-08Подача