Изобретение относится к теплоэнергетике, может быть использовано для охлаждения оборотной воды.
Известна вентиляторная градирня (см. патент №2561225 МПК F28С 1/00 Опубл. 27.08.2015, бюл. №24), содержащая вытяжную башню с воздуховходными окнами по периметру ее нижней части, водоуловитель, водораспределительную систему с суживающимися соплами и расположенную симметрично относительно продольной оси башни, ороситель и бассейн, разделенный на секции перегородками, каждая из которых выполнена из биметалла зигзагообразно с образованием в секции чередующихся в шахматном порядке конфузоров и диффузоров, а водораспределительная система выполнена попарно расположенными суживающимися соплами и на внутренней поверхности каждого из пары сопел выполнены продольно расположенные от большего основания к меньшему криволинейные канавки, при этом в первом из пары сопел направляющая криволинейной канавки имеет направление по ходу часовой стрелки, а во втором направляющая криволинейной канавки имеет направление против движения часовой стрелки, при этом вытяжная башня снабжена вентилятором, расположенным в верхней ее части, регулятором скорости вращения привода вентилятора и регулятором температуры с датчиком температуры атмосферного воздуха, при этом регулятор температуры своим выходом соединен с регулятором скорости вращения в виде блока порошковых электромагнитных муфт, а регулятор температуры содержит блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи и выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости вращения витых пучков, продольно вытянутых снизу вверх.
Недостатком является снижение прочностных параметров вытяжной башни и расположенного в ней оборудования с последующим аварийным разрушением под воздействием сейсмических волн, возникающих при длительной эксплуатации из-за вибрации, образованной как закрученным движением горячей воды с образованием микрозавихрений, так и перемещением массы воды по конфузорам и диффузорам с различными скоростными усилиями при турбулизации потока воды.
Известна вентиляторная градирня (см. патент №2676827 МПК F28С 1/00 Опубл. 11.01.2019, бюл. №2), содержащая вытяжную башню с воздуховходными окнами по периметру ее нижней части, водоуловитель, водораспределительную систему с суживающимися соплами и расположенную симметрично относительно продольной оси башни, ороситель и бассейн, разделенный на секции перегородками, каждая из которых выполнена из биметалла загзагообразно с образованием в секции чередующихся в шахматном порядке конфузоров и диффузоров, а водораспределительная система выполнена попарно расположенными суживающимися соплами и на внутренней поверхности каждого из пары сопел выполнены продольно расположенные от большего основания к меньшему криволинейные канавки, при этом в первом из пары сопел направляющая криволинейной канавки имеет направление по ходу часовой стрелки, а во втором направляющая криволинейной канавки имеет направление против движения часовой стрелки, при этом вытяжная башня снабжена вентилятором, расположенным в верхней ее части, регулятором скорости вращения привода вентилятора и регулятором температуры с датчиком температуры атмосферного воздуха, при этом регулятор температуры своим выходом соединен с регулятором скорости вращения в виде блока порошковых электромагнитных муфт, а регулятор температуры содержит блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи и выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости вращения, кроме того, вытяжная башня с наружной поверхности покрыта тонковолокнистым базальтовым материалом, расположенным в виде витых пучков, продольно вытянутых снизу вверх, причем покрытие тонковолокнистым базальтовым материалом в виде витых пучков на наружной поверхности вытяжной градирни выполнено комплектами, где пучки попарно, количеством не менее четырех расположены в виду синусоид, продольно вытянутых по высоте, выступы и впадины которых при совмещении являются концентраторами перемещающихся сейсмических волн, а участки наибольшего сближения синусоид составляют узлы, способствующие образованию стоячих волн.
Недостатком является повышение пожароопасности при длительной эксплуатации вентиляторной градирни вследствие возникновения короткого замыкания в электрооборудовании автоматизированной системы регулирования и контроля работы вентилятора. Это обусловлено разрушающим воздействием на электроизоляцию проводной сети по подачи электрической энергии от стационарного постороннего источника, высокой концентрации капле- или парообразной влаги в воздушной среде, окружающий вытяжную башню.
Технической задачей предлагаемого изобретения является обеспечение пожаробезопасной эксплуатации вентиляторной градирни путем устранения проводной электросети для питания системы автоматизированной работы вентилятора, за счет выполнения источника электроэнергии в виде термоэнергетического генератора и его расположения в вытяжной башне.
Технический результат по обеспечению пожаробезопасной эксплуатации достигается тем, что вентиляторная градирня содержит вытяжную башню с воздуховходными окнами по периметру ее нижней части, водоуловитель, водораспределительную систему с суживающимися соплами
и расположенную симметрично относительно продольной оси башни, ороситель и бассейн, разделенный на секции перегородками, каждая из которых выполнена из биметалла зигзагообразно с образованием в секции чередующихся в шахматном порядке конфузоров и диффузоров, а водораспределительная система выполнена попарно расположенными суживающимися соплами и на внутренней поверхности каждого из пары сопел выполнены продольно расположенные от большего основания к меньшему криволинейные канавки, при этом в первом из пары сопел направляющая криволинейной канавки имеет направление по ходу часовой стрелки, а во втором направляющая криволинейной канавки имеет направление против движения часовой стрелки, при этом вытяжная башня снабжена вентилятором, расположенным в верхней ее части, регулятором скорости вращения привода вентилятора и регулятором температуры с датчиком температуры атмосферного воздуха, при этом регулятор температуры своим выходом соединен с регулятором скорости вращения в виде блока порошковых электромагнитных муфт, а регулятор температуры содержит блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи и выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости вращения, кроме того, вытяжная башня с наружной поверхности покрыта тонковолокнистым базальтовым материалом, расположенным в виде витых пучков, продольно вытянутых снизу вверх, причем покрытие тонковолокнистым базальтовым материалом в виде витых пучков на наружной поверхности вытяжной градирни выполнено комплектами, где пучки попарно, количеством не менее четырех расположены в виду синусоид, продольно вытянутых по высоте, выступы и впадины которых при совмещении являются концентраторами перемещающихся сейсмических волн, а участки наибольшего сближения синусоид составляют узлы, способствующие образованию стоячих волн, при этом выполнен термоэлектрический генератор, включающий корпус с каналом для горячей воды и комплект дифференциальных термопар, «горячие» концы которого расположены внутри канала для горячей воды, а «холодные» концы закреплены на внешней поверхности корпуса термоэлектрического генератора, причем «горячие» и «холодные» концы дифференциальных термопар покрыты диэлектриком из эпоксидной эмали, кроме того вход канала для горячей воды корпуса термоэлектрического генератора соединен с подающим коллектором водораспределительной системы, а выход его соединен с водораспределителем.
На фиг.1 показан общий вид вентиляторной градирни, на фиг.2 - разрез корпуса бассейна, на фиг.3 - внутренняя поверхность суживающегося сопла с продольно расположенными канавками, направляющая которых имеет направление по ходу часовой стрелки, на фиг.4 - внутренняя поверхность суживающегося сопла с продольно расположенными канавками, направляющая которых имеет направление против хода часовой стрелки, на фиг.5 – комплект покрытых тонковолокнистым базальтовым материалом в виде витых пучков попарно расположенных количеством не менее четырех и вытянутых по линии синусоиды вдоль вентиляторной градирни, на фиг. 6 – термоэлектрический генератор, включающий корпус с каналом для горячей воды, соединенный с водораспределительной системой и комплект дифференциальных термопар.
Вентиляторная градирня содержит корпус 1 с воздуховпускными окнами и водосборным бассейном 2, над которым установлены ороситель 3, водораспределительная система 4, водоуловитель 5. На верхней части корпуса 1 закреплены вытяжное устройство, включающее конфузор 6 с вентилятором 7, концевой конфузорный канал 8 с устройством регулирования подачи ветрового потока атмосферного воздуха и диффузор 9, за вентилятором 7 жестко укреплены профильные пластины 10, а на внутренней поверхности от входа к выходу диффузора 9 расположены ребра 11, соединенные с кольцевой канавкой 12 и внешней поверхностью конической обечайки 13. Ороситель 3 имеет не менее двух секций из волнообразных пластин 14, водораспределительная система 4 состоит из подводящего коллектора 15 и водораспределителя 16, включающего ассиметрично укрепленную трубу 17, относительно корпуса 1, на которых распределены суживающие сопла 18 с встроенными в них завихрителями 19.
Водосборный бассейн 2 (фиг. 1 и фиг. 2) включает корпус 1, в котором установлены секционные перегородки 20, выполненные зигзагообразными и образует в каждой секции 21 диффузоры 22 и конфузоры 23, расположенные относительно соседних секций в шахматном порядке.
Водораспределительная система 4 с суживающимися соплами 18 выполнена в виде попарно расположенных суживающихся сопел 24 и 25, при этом на внутренней поверхности 26 суживающегося сопла 24 выполнены продольно расположенные от большего основания 27 к меньшему основанию 28 криволинейные канавки 29, причем направляющая криволинейной канавки 29 имеет направление по ходу часовой стрелки, а на внутренней поверхности 30 суживающегося сопла 25 выполнены продольно расположенные от большего основания 31 к меньшему основанию 32 криволинейные канавки 33 и направляющая криволинейной канавки 33 имеет направление против хода часовой стрелки. Вытяжная башня снабжена вентилятором 7, расположенным в ее верхней части, регулятором скорости вращения 34 привода 35 и регулятором температуры 36 с датчиком температуры 37 атмосферного воздуха, при этом регулятор температуры 36 своим выходом соединен с регулятором скорости вращения 34 в виде блоков порошковых электромагнитных муфт, а регулятор температуры 36 содержит блок сравнения 38 и блок задания 39. Блок сравнения соединен с входом электронного усилителя 40, оборудованного блоком нелинейной обратной связи 41 и выход электронного усилителя 40 соединен с входом магнитного усилителя 42 с выпрямителем, который на выходе подключен к регулятору скорости вращения 34. Корпус 1 вытяжной башни с наружной поверхности 43 покрыт тонковолокнистым базальтовым материалом 44, расположенным в виде витых пучков 45, продольно вытянутых снизу вверх.
Покрытые тонковолокнистым базальтовым материалом 44 в виде витых пучков 45 по наружной поверхности 43 вентиляторной градирни выполнено комплектами 46, где попарно 47 и 48, количеством не менее четырех, расположенные по линии 49, 50, 51, 52 в виде синусоид, продольно вытянутых по высоте корпуса 1, выступы 53 и впадины 54, которые при совмещении являются концентрами перемещающихся сейсмических волн 55, а участки наибольшего сближения синусоид 49, 50, 51 и 52 составляют узлы 56 и 57, способствующих образованию стоячих волн 58.
Выполнен термоэлектрический генератор 59, включающий корпус 60 с каналом для горячей воды 61 и комплект дифференциальных термопар 62. «Горячие» концы термопар 63 комплекта дифференциальных термопар 62 расположены внутри канала для горячей вод 61, а «холодные» концы 64 комплекта закреплены на внешней поверхности 65 корпуса 60 термоэлектрического генератора 59. «Горячие» 63 и «холодные» 64 концы комплекта дифференциальных термопар 62 покрыты диэлектриком из эпоксидной эмали. Вход 67 канала для горячей воды 61 соединен с подающим коллектором 15 водораспределительной системы 4, а выход 68 его соединен с водораспределителем 16.
Вентиляторная градирня работает следующим образом.
Длительная эксплуатация вентиляторной градирни, особенно в переходные периоды года: зима – весна и лето – осень, когда наблюдаются интенсивные атмосферные осадки, воздушная среда вокруг вытяжной башни насыщенна каплеобразной и конденсирующейся парообразной влагой, которая интенсивно разрушает электроизоляцию проводной сети подачи электрической энергии на автоматизированную систему регулирования и контроля работы вентилятора. В результате, наблюдается искрообразование с последующей пожароопасной эксплуатацией вентиляторной градирни в целом. Особенно это проявляется при удалении стационарного источника электрической энергии от вентилятрной градирни, когда требуется значительная длина проводов с электроизоляцией при подаче электрической энергии в систему автоматизации работы вентилятора.
Выполнение источника электрической энергии в виде термоэлектрического генератора вблизи от системы автоматизации работы вентилятора, т.е. во внутреннем объеме вытяжной башни устраняет необходимость использования протяженной проводной сети для передачи энергии и, как следствие, не наблюдения разрушения ее электроизоляции с последующим искрообразованием и пожароопасной эксплуатацией вентиляторной градирни.
Горячая вода из подающего коллектора 15 водораспределительной системы 4 поступает на вход 67 канала для горячей воды 61 корпуса 60 термоэлектрического генератора 59 и контактирует с расположенными внутри канала 61 «горячими» концами 63 комплекта дифференциальных термопар 62.
В связи с тем, что «холодные» концы 64 комплекта дифференциальных термопар 62 закреплены на внешней поверхности 65 корпуса 60 термоэлектрического генератора 59, имеющей более низкую температуру, чем температура горячей воды, то возникает термо-эдс (см., например: Иванова Г.М. Теплотехнические измерения и приборы. М.: Энергоиздат, 1984 – 232с.,ил.) значение которой между концами 63 и 64 комплект дифференциальных термопар 62 достигает 6,96 мВ, что обеспечивает для системы автоматизации работы вентилятора от 12 до 36 В. (см., например Теоретические основы теплотехники. Теплотехнический эксперимент. Справочник. Под общ. ред. В. М. Зорина. М.: Энергоатомиздат, 1988 – 560с.ил.) В связи с тем, что вода является проводником электричества, что снижает потенциал термоэлектрического генератора, то «горячие» 63 и «холодные» 64 концы покрыты диэлектриком из эпоксидной эмали (см. Алиев И.И. Справочник по электротехнике и электрооборудованию. М.: Высшая школа. 2007-263с.ил.)
При наличии вибрационной нагрузки сейсмическая волна 55 перемещается по высоте корпуса 1 вентиляторной градирни, как по его материалу, так и по покрытию тонковолокнистым базальтовым материалом 44 в виде витых пучков 45 на наружной поверхности 43 вентиляторной градирни. В связи с тем, что плотность тонковолокнистого базальтового материала 44 значительно меньше плотности материала корпуса 1, то сейсмическая волна 55 имеет более высокую амплитуду и, соответственно, скорость распространения по высоте покрытия из тонковолокнистого базальтового материала 44 с образованием резонансных всплесков в местах соединения корпуса 1 с оборудованием, размещенные в нем витые пучки 45 расположенные по линии 49, 50, 51, 52 в виде синусоид продольно вытянутых по высоте корпуса 1, являются направляющими для перемещения сейсмических волн 55, которые концентрируются в выступах 55 и впадинах 54. При этом выделяются участки наибольшего сближения попарно 47 и 48 расположенных пучков 45, которые способствуют появлению узлов 56 и 57, вызывающих образование стоячих волн 58 (см. например, Ландау Л.О., Лившин Е.М., Теоретическая физика. М.: Наука. 1968-836 с., ш), которые гасят сейсмические волны 55 и нейтрализуют резонансные всплески на наружной поверхности 43 корпуса 1 вентиляторной градирни.
В результате, устраняется интенсивное разрушение материала корпуса 1 и оборудования, размещенного в нем, под воздействием сейсмических волн, обусловленных вибрационными смещениями, возникающими при вращательном движении горячей воды и скоростными перепадами в диффузорах и конфузорах вентиляторной градирни, что обеспечивает ее нормированные сроки эксплуатации.
При температуре воды в бассейне 2 значительно более низких значений, чем температура воздуха окружающей наружную поверхность 43 корпуса 1 вытяжной башни, и, особенно, при отрицательных температурах окружающей среды наблюдается интенсивный отвод техводы из верхнего объема вытяжной башни с нарушением микроклимата процесса охлаждения оборотной воды, т.е. осуществляется нестационарный тепломассообмен, резко снижающий эффективность охлаждения оборотной воды (см., например, стр. 435 Нащокин В.В. Техническая термодинамика и теплопереадча.-М.: Высшая школа, 1980, с.469).
При высоких положительных температурах воздуха окружающую наружную поверхность 43 среды и особенно дополнительно с солнечной радиацией наблюдается интенсивное поступление теплоты к воде бассейна 2 с последующим нарушением микроклимата процесса охлаждения оборотной воды, т.е. наблюдается также нестационарный тепломассообмен, резко увеличивающий энергоемкость охлаждения оборотной воды, из-за необходимости увеличения количества подавляемого атмосферного воздуха через воздуховпускные окна корпуса 1.
При покрытии тонковолокнистым базальтовым материалом 44 наружной поверхности 43 в условиях эксплуатации вентиляторной градирни с температурой окружающей среды более низкой, чем температура воды в бассейне 2, тепловой поток теплопроводностью через наружную поверхность 43 передается тонволокнистому базальтовому материалу 44, а за счет того, что он выложен в виде витых пучков 45, продольно вытянутых снизу вверх, наблюдается не только устранение тепловых потерь в связи с теплоизоляционными свойствами, но и аккумулирование тепловой энергии (см., например, Волокнистые материалы из базальтов Украины, издательство «Техника». Киев, 1971-76 с., ил.). Наличие высокой температуры воздуха окружающей среды особенно в светлое время суток с солнечной радиацией, тонковолокнистый базальтовый материал 44 теплоизолирует наружную поверхность 43, с последующим аккумулированием тепловой энергии, которая в темное время суток теплопроводностью передается во внутрь корпуса 1, поддерживая стационарный процесс тепломассообмена оборотной охлаждаемой воды круглосуточно. Следовательно, выполнение наружной поверхности 43 с покрытием из тонковолокнистого базальтового материала 44 в виде пучков 45 обеспечивает нормированный тепломассообменный процесс охлаждения водопроводной воды, что снижает энергозатраты до расчетно-оптимальных.
Уменьшение температуры атмосферного воздуха ниже нормированной (например, 20 оС) фиксируется датчиком температуры 37 атмосферного воздуха. При этом, как известно, плотность всасываемого в вентилятор атмосферного воздуха возрастает и увеличивается массовая производительность, т.е. наблюдается излишество количества воздуха, поступающего в воздуховходные окна по сравнению с нормировано-необходимым, что приводит к ненужным энергозатратам на привод вентилятора.
Сигнал, поступающий с датчика температуры 37, становится большим, чем сигнал блока задания 39, и на входе блока сравнения 38 появится сигнал отрицательной полярности, который поступает на вход электронного усилителя 40 одновременно с сигналом отрицательной нелинейной обратной связи блока 41. За счет этого в электронном усилителе 40 компенсируется нелинейность характеристики привода 35 вентилятора 7. Сигнал с выхода электронного усилителя 40 поступает на вход магнитного усилителя 42, где усиливается по мощности, выпрямляется и поступает в регулятор скорости вращения 34 в виде блока порошковых электромагнитных муфт. Отрицательная полярность сигнала электронного усилителя 40 вызывает уменьшение тока возбуждения на выходе магнитного усилителя 42. В результате снижается момент от привода 35 вентилятора 7, передаваемый на регулятор скорости 36 в виде блока порошковых электромагнитных муфт и поступление атмосферного воздуха через воздуховходные окна в нижнюю часть корпуса 1 вытяжной башни, достигая значений нормировано-необходимых для процесса охлаждения оборотной воды, со снижением энергозатрат на привод 35 вентилятора 7.
Увеличение температуры атмосферного воздуха выше нормированной (например, 20 оС), приводит к уменьшению его плотности и соответственно массовой производительности вентилятора 7 при постоянной скорости вращения привода 35, что ухудшает тепломассобменный процесс охлаждения оборотной воды. Для устранения данного явления также применяется система автоматизированного контроля. В этом случае сигнал, поступающий с датчика температуры 37, становится меньшим, чем сигнал блока задания 39 и на входе блока сравнения 38 появится сигнал положительной полярности, который поступает на вход электронного усилителя 40 одновременно с сигналом отрицательной нелинейной оборотной связи 41. Сигнал с выхода электронного усилителя 40 поступает на вход магнитного усилителя 42, где усиливается по мощности, выпрямляется и поступает в регулятор скорости вращения 34 в виде блока порошковых электромагнитных муфт. Положительная полярность сигнала электронного усилителя 40 вызывает увеличение тока возбуждения на выходе магнитного усилителя 42. В результате увеличивается момент от привода 35 вентилятора 7, передаваемый на регулятор скорости вращения 36 в виде блока порошковых электромагнитных муфт, и поступление атмосферного воздуха через воздуховходные окна в нижнюю часть корпуса 1 вытяжной башни, достигая значений нормировано-необходимых для процесса охлаждения оборотной воды.
Горячая вода подается из коллектора 15 в водораспределитель 16 через асимметричную укрепленную трубу 17 относительно корпуса 1 в суживающиеся сопла 18. Размещение суживающихся сопел 18 попарно, таким образом, что, например, на внутренней поверхности 26 суживающегося сопла 24 выполнены криволинейные канавки 29, направляющая которых имеет направление по ходу движения часовой стрелки, а на внутренней поверхности 30 суживающегося сопла 25 выполнены криволинейные канавки 33, направляющая которых имеет направление против хода часовой стрелки, приводит к следующему: поток горячей воды, перемещаясь от большего основания 27 суживающегося сопла 24 по криволинейным канавкам 29, расположенным на внутренней поверхности 26, закручивается по ходу часовой стрелки и после завихрителя 19 в виде микрозавихрения выбрасывается в полость корпуса 1 между оросителем 3 и водоуловителем 5.
Одновременно, поток горячей воды, перемещающийся от большего основания 3 суживающегося сопла 25 по криволинейным канавкам 33, расположенным на внутренней поверхности 30, закручивается против хода часовой стрелки и после соответствующего завихрителя 19 в виде микрозавихрения выбрасывается также в полость корпуса 1 между оросителем 3 и водоуловителем 5. Попарное расположение суживающихся сопел 24 и 25 приводит к тому, что два вращающихся в противоположные направления микрозавихрителя сталкиваются, образуя микровзрывы (см., например, А.П. Меркулов. Вихревой эффект и его применение в промышленности. Куйбышев. 1969, 348 с.) с интенсивным перемешиванием капелек горячей воды, что резко интенсифицирует тепломассообменный процесс охлаждаемой воды с воздухом, выходящим из оросителя 3.
Под действием гидродинамических свойств, преимущественно, каплеобразная масса остывающей горячей воды фонтанирует на оросителе 3 и стекает по волнообразным пластинам 14 первой секции в виде полосок пленки и капель, контактируя с проходящим потоком воздуха. После первой секции вода дождеванием переходит на вторую секцию, где циклично повторяется теплообмен первой секции, т.е. осуществляется пленочно-капельный эффект. Со второй секции охлаждения жидкость поступает в водосборный бассейн 2. При этом атмосферный воздух поступает в корпус 1 через воздуховпускные окна и охлаждает горячую воду, после чего насыщенный парами и каплями поступает в водоуловитель 5, где очищается от воды, и вентилятор 4 осуществляет отсос воздуха из корпуса 1.
В водосборном бассейне 2 секции 21 расположены таким образом, что обеспечивается равномерная эпюра скоростей водяного потока в поперечном сечении корпуса бассейна 2, поддерживаемая за счет «живого» сечения входных отверстий диффузоров 22 и конфузоров 23. Охлаждаемый поток воды с оптимальной эпюрой скоростей, обеспечивающий рациональный контакт воды с зигзагообразными секционными перегородками 20, поступает в секции 21 и, проходя последовательно участки диффузоров 22 и конфузоров 23, непрерывно меняет свою скорость, что приводит к турбулизации потока и повышению теплообмена, а также к перераспределению в секциях 21 давления движущегося потока воды. Это выравнивает гидравлическое сопротивление воды в секциях 21, приводит к равномерному смыванию водой всего объема водосборного бассейна 2.
Кроме того, шахматное расположение диффузоров 22 и кофузоров 23 в каждой секции 21 относительно соседней приводит к тому, что поверхности секционных перегородок 20 одновременно находятся под различным скоростным воздействием потока движущейся воды (с одной стороны перегородку 20 омывает поток, движущийся в диффузоре, с другой омывает поток, движущийся в конфузоре). В результате на данный элемент секционной перегородки 20 действует разность температур (температурный напор) посекционно разделенного потока охлаждения воды. Выполнение секционных перегородок 20 из биметалла приводит в данных условиях воздействия температурного напора к возникновению продольных колебаний термовибрации, что создает дополнительную турбулизацию непосредственно в поперечном слое секционных перегородок 20, значительно повышая тепломассообменные процессы дальнейшего поэтапного охлаждения воды в бассейне 2. Все это в конечном итоге и обеспечивает эффективную работу вентиляторной градирни даже при незначительном перепаде температур между атмосферным воздухом и охлаждаемой водой.
название | год | авторы | номер документа |
---|---|---|---|
Вентиляторная градирня | 2018 |
|
RU2676827C1 |
Вентиляторная градирня | 2019 |
|
RU2721741C1 |
ВЕНТИЛЯТОРНАЯ ГРАДИРНЯ | 2014 |
|
RU2561225C1 |
ВЕНТИЛЯТОРНАЯ ГРАДИРНЯ | 2011 |
|
RU2500964C2 |
ВЕНТИЛЯТОРНАЯ ГРАДИРНЯ | 2014 |
|
RU2576948C1 |
ВЕНТИЛЯТОРНАЯ ГРАДИРНЯ | 2014 |
|
RU2575225C1 |
ВЕНТИЛЯТОРНАЯ ГРАДИРНЯ | 2008 |
|
RU2411437C2 |
ВЕНТИЛЯТОРНАЯ ГРАДИРНЯ | 2014 |
|
RU2575244C2 |
ВЕНТИЛЯТОРНАЯ ГРАДИРНЯ | 2001 |
|
RU2200924C2 |
ВЕНТИЛЯТОРНАЯ ГРАДИРНЯ | 1999 |
|
RU2156422C1 |
Изобретение относится к теплоэнергетике и может быть использовано для охлаждения оборотной воды. Вентиляторная градирня содержит вытяжную башню с воздуховходными окнами по периметру ее нижней части, водоуловитель, водораспределительную систему с суживающимися соплами, расположенную симметрично относительно продольной оси башни, ороситель и бассейн, разделенный на секции перегородками, каждая из которых выполнена из биметалла зигзагообразно с образованием в секции чередующихся в шахматном порядке конфузоров и диффузоров, а водораспределительная система выполнена попарно расположенными суживающимися соплами и на внутренней поверхности каждого из пары сопел выполнены продольно расположенные от большего основания к меньшему криволинейные канавки, при этом в первом из пары сопел направляющая криволинейной канавки имеет направление по ходу часовой стрелки, а во втором направляющая криволинейной канавки имеет направление против движения часовой стрелки, при этом вытяжная башня снабжена вентилятором, расположенным в верхней ее части, регулятором скорости вращения привода вентилятора и регулятором температуры с датчиком температуры атмосферного воздуха, при этом регулятор температуры своим выходом соединен с регулятором скорости вращения в виде блока порошковых электромагнитных муфт, а регулятор температуры содержит блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, и выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости вращения, кроме того, вытяжная башня с наружной поверхности покрыта тонковолокнистым базальтовым материалом, расположенным в виде витых пучков, продольно вытянутых снизу вверх, причем покрытие тонковолокнистым базальтовым материалом в виде витых пучков на наружной поверхности вытяжной градирни выполнено комплектами, где пучки попарно количеством не менее четырех расположены в виде синусоид, продольно вытянутых по высоте, выступы и впадины которых при совмещении являются концентраторами перемещающихся сейсмических волн, а участки наибольшего сближения синусоид составляют узлы, способствующие образованию стоячих волн. Имеется термоэлектрический генератор, включающий корпус с каналом для горячей воды и комплект дифференциальных термопар, «горячие» концы которого расположены внутри канала для горячей воды, а «холодные» концы закреплены на внешней поверхности корпуса термоэлектрического генератора, причем «горячие» и «холодные» концы дифференциальных термопар покрыты диэлектриком из эпоксидной эмали, кроме того, вход канала для горячей воды корпуса термоэлектрического генератора соединен с подающим коллектором водораспределительной системы, а выход его соединен с водораспределителем. Технический результат - обеспечение пожаробезопасной эксплуатации вентиляторной градирни путем устранения проводной электросети для питания системы автоматизированной работы вентилятора. 6 ил.
Вентиляторная градирня, содержащая вытяжную башню с воздуховходными окнами по периметру ее нижней части, водоуловитель, водораспределительную систему с суживающимися соплами, расположенную симметрично относительно продольной оси башни, ороситель и бассейн, разделенный на секции перегородками, каждая из которых выполнена из биметалла зигзагообразно с образованием в секции чередующихся в шахматном порядке конфузоров и диффузоров, а водораспределительная система выполнена попарно расположенными суживающимися соплами и на внутренней поверхности каждого из пары сопел выполнены продольно расположенные от большего основания к меньшему криволинейные канавки, при этом в первом из пары сопел направляющая криволинейной канавки имеет направление по ходу часовой стрелки, а во втором направляющая криволинейной канавки имеет направление против движения часовой стрелки, при этом вытяжная башня снабжена вентилятором, расположенным в верхней ее части, регулятором скорости вращения привода вентилятора и регулятором температуры с датчиком температуры атмосферного воздуха, при этом регулятор температуры своим выходом соединен с регулятором скорости вращения в виде блока порошковых электромагнитных муфт, а регулятор температуры содержит блок сравнения и блок задания, причем блок сравнения соединен с входом электронного усилителя, оборудованного блоком нелинейной обратной связи, и выход электронного усилителя соединен с входом магнитного усилителя с выпрямителем, который на входе подключен к регулятору скорости вращения, кроме того, вытяжная башня с наружной поверхности покрыта тонковолокнистым базальтовым материалом, расположенным в виде витых пучков, продольно вытянутых снизу вверх, причем покрытие тонковолокнистым базальтовым материалом в виде витых пучков на наружной поверхности вытяжной градирни выполнено комплектами, где пучки попарно количеством не менее четырех расположены в виде синусоид, продольно вытянутых по высоте, выступы и впадины которых при совмещении являются концентраторами перемещающихся сейсмических волн, а участки наибольшего сближения синусоид составляют узлы, способствующие образованию стоячих волн, отличающаяся тем, что выполнен термоэлектрический генератор, включающий корпус с каналом для горячей воды и комплект дифференциальных термопар, «горячие» концы которого расположены внутри канала для горячей воды, а «холодные» концы закреплены на внешней поверхности корпуса термоэлектрического генератора, причем «горячие» и «холодные» концы дифференциальных термопар покрыты диэлектриком из эпоксидной эмали, кроме того, вход канала для горячей воды корпуса термоэлектрического генератора соединен с подающим коллектором водораспределительной системы, а выход его соединен с водораспределителем.
Вентиляторная градирня | 2018 |
|
RU2676827C1 |
Система оборотного водоснабжения | 2016 |
|
RU2643407C2 |
Авторы
Даты
2020-06-02—Публикация
2019-09-25—Подача