Изобретение относится к радиоизотопным устройствам, предназначенным для контроля технологических параметров производственных процессов, а конкретно, к способам стабилизации тракта регистрации гамма-излучения.
Известен способ стабилизации чувствительности сцинтилляционного блока детектирования гамма-излучения [1], при котором определяют амплитудный спектр поступающего от спектрометрического блока сигнала, вычисляют интегральные значения скоростей счета в окнах спектра, находят на спектре действительное местоположение реперной точки, измеряют его отклонение от требуемого положения и вырабатывают сигнал коррекции чувствительности в зависимости от полученной величины и знака отклонения, при этом требуемое положение репера выбирают на спектре в точке, соответствующей максимальной энергии гамма-квантов, испускаемых в цепочках распада природных радионуклидов. Технический результат - повышение устойчивости стабилизации, использование способа для сцинтилляционных блоков детектирования, упрощение конструкции устройства. Недостаток - отсутствие реперного сигнала в низкоэнергетической области спектра гамма-излучения и, соответственно, высокая погрешность определения границ интегрирования в них.
Известен способ определения объемной плотности и индекса фотоэлектрического поглощения горных пород [2], заключающийся в регистрации спектров рассеянного гамма-излучения на двух расстояниях от источника гамма-квантов, с последующей привязкой энергетических шкал зарегистрированных спектров, определении значений средних скоростей следования импульсов в выбранных энергетических окнах, расчете значений плотности и индекса фотоэлектрического поглощения горных пород с последующей коррекцией полученных значений путем ввода поправок. Стабилизация энергетических шкал спектров в этом способе осуществляется по двум присутствующим в спектрах пикам: пику с энергией 662 кэВ от изотопа Cs-137, размещенному вблизи детектора, и пику характеристического гамма-излучения материала коллиматоров, изготовленных, например, из вольфрама с энергией 59 кэв. Недостатком данного способа является следующее. Энергетические окна для определения индекса фотоэлектрического поглощения горных пород расположены в областях 42÷92 кэВ и 150÷450 кэВ. При фотоэлектрическом поглощении гамма-кванта электроном К-уровня вольфрама с энергией связи Есвязи=69,5 кэВ [3], вакансия заполняется электроном из L-уровня с Есвязи=10,2 кэВ. Характеристический рентгеновский фотон обладает энергией, равной разности между этими двумя уровнями, или 59,3 кэВ. Максимальные сечения фотоэлектрического поглощения гамма-кванта электроном К-уровня на вольфраме расположены в областях энергий 69÷120 кэВ. Таким образом, при описываемом способе формирования реперного пика по характеристическому излучению вольфрама происходит конвертирование гамма-квантов с энергией более 92 кэВ в область 42÷92 кэВ, что снижает точность проводимых измерений. Так же геометрический фактор расположения материала коллиматоров не позволяет получить данный реперный пик достаточно отчетливо.
На Фиг. 1 показан типичный спектр рассеянного гамма-излучения от горных пород с пиком характеристического излучения от вольфрама, из которого выполнен коллиматор. Очевидно, что интенсивность данного пика невысокая.
Наиболее близким к заявляемому способу является способ [4], при котором стабилизация энергетической шкалы спектрометра ГГК-ЛП осуществляется по двум присутствующим в спектре пикам от изотопа Cs-137.
На Фиг. 2 приведена упрощенная схема распада изотопа Cs-137, имеющего период полураспада 30.17 лет. В результате распада Cs-137 образуется его дочерний радионуклид Ва-137, который также радиоактивен и имеет период полураспада 2.55 мин. Именно изотоп Ва-137 и испускает при распаде гамма-кванты с энергией 661.6 кэВ.
На Фиг. 3 приведен характерный спектр гамма-излучения, зарегистрированный сцинтилляционным детектором NaI(TI) при его прямом облучении продуктами распада изотопа Cs-137.
Хорошо прослеживаются два пика полного поглощения: 662 кэВ и 32 кэВ (пик с энергией 32 кэВ, образующийся в результате рентгеновского излучения изотопов Ва, образующихся при распаде Cs-137). По этим двум пикам проводится стабилизация энергетической шкалы спектрометра. На практике изотоп Cs-137 интенсивностью порядка 2÷6 кБк помещают непосредственно внутри сцинтилляционного детектора. Это позволяет проводить идентификацию энергетической шкалы спектрометра по двум реперным пикам. Недостаток данного способа - «размытие» реперного пика с энергией 32 кэВ при высоких загрузках спектрометрического тракта. Высокие загрузки возникают как при использовании мощных источников гамма-излучения для облучения горных пород, так и при исследовании пород с низким эффективным атомным номером. Увеличение интенсивности изотопа Cs-137, используемого в качестве реперного источника, позволяет решить проблему размывания пика, но, с другой стороны, повышает уровень фона в измерительных окнах, что так же отрицательно сказывается на точности проводимых измерений.
На Фиг. 4 приведен такой пример «размывания» реперного пика с энергией 32 кэВ.
Заявляемое техническое решение позволяет повысить качество стабилизации энергетической шкалы спектрометра независимо от мощности источников гамма-излучения для облучения горных пород и при исследовании пород с низким эффективным атомным номером. Это, в свою очередь, повысит точность определения эффективного атомного номера горных пород.
Указанный технический результат достигается за счет того, что в способе стабилизации энергетической шкалы при определении объемной плотности и эффективного атомного номера горных пород методом ГГК-ЛП сцинтилляционный детектор гамма-квантов окружают спрессованным порошком BaSO4 плотностью 0.1÷0.5 г/см2, напротив коллиматора плотность порошка ВаSO4 меньше и составляет, например, 0.05÷0.10 г/см2. На Фиг. 5 показан вариант расположения порошка ВаSO4 в измерительной установке зонда ГГК-ЛП прибора 2HHK- ГГКЛП-LWD. Здесь цифрами обозначены: 1 - корпус прибора, 2 - вольфрамовый экран, 3 - источник Cs-137, 4 - коллимационные окна в вольфрамовом экране, 5 - ФЭУ, 6 - сцинтилляционные детекторы, 7 - пробка, 8 - порошок ВаSO4. Спектр рассеянного гамма-излучения регистрируется на среднем зонде.
Таким образом, часть гамма-излучения, проходящего через коллимационное окно, будет взаимодействовать с барием, находящимся в порошке ВаSO4, окружающий детектор. Энергия характеристического излучения бария составляет 32 кэВ. Вследствие этого дополнительно к пику в области 32 кэВ, постоянно присутствующему в регистрируемом спектре, добавляется пик с такой же энергией, интенсивность которого пропорциональна интенсивности гамма квантов в низкоэнергетической области. Это позволяет получать при проведении измерений отчетливый пик в области 32 кэВ для стабилизации энергетической шкалы независимо от интенсивности гамма-излучения, проходящего через коллимационное окно. На Фиг. 6 приведен спектр рассеянного гамма-излучения, проходящего через коллимационное окно, смешанный с реперным спектром от изотопа Cs-137.
Литература
1. Патент РФ №2364892 С1, Способ стабилизации чувствительности сцинтилляционного блока детектирования гамма-излучения, 2008.
2. Development of a spectral limo-density810 logging tool by use of empirical methods, A. Gearhart, Gary L. Mathis. Gearhart Industries, Inc. Fort Worth, Texas, SPWLA 27 Annual Logging Symposium, June 9-13, 1996.
3. Филиппов E.M. Ядерная разведка полезных ископаемых. Справочник. Киев. Наукова думка. 1978. С. 588.
4. ИНСТРУКЦИЯ по проведению литолого-плотностного гамма-гамма-каротажа аппаратурой серии СГПЛ и обработке результатов измерений МИ 41-17-1402-04. Тверь. ООО «Издательство ГЕРС». 2004. С. 44.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ЛИТОЛОГО-ПЛОТНОСТНОГО ГАММА-ГАММА - КАРОТАЖА И УСТРОЙСТВО ДЛЯ ЕГО ПРОВЕДЕНИЯ | 2003 |
|
RU2249836C1 |
СПОСОБ КОМПЛЕКСНОГО РАДИОАКТИВНОГО КАРОТАЖА | 1991 |
|
RU2025748C1 |
СПОСОБ ГАММА-СПЕКТРОМЕТРИИ | 1997 |
|
RU2159451C2 |
СПОСОБ ГАММА-КАРОТАЖА СКВАЖИНЫ (ВАРИАНТЫ) | 2007 |
|
RU2377610C1 |
Способ флуоресцентного рентгенорадиометрического анализа состава вещества и устройство для его осуществления | 1983 |
|
SU1083100A1 |
ТВЕРДЫЙ СЦИНТИЛЛЯЦИОННЫЙ МАТЕРИАЛ | 2014 |
|
RU2561992C1 |
СПОСОБ СПЕКТРОМЕТРИЧЕСКОГО ГАММА-КАРОТАЖА И УСТРОЙСТВО ДЛЯ ЕГО ПРОВЕДЕНИЯ | 2001 |
|
RU2191413C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ СОДЕРЖАНИЯ ЭЛЕМЕНТОВ | 1997 |
|
RU2158943C2 |
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ СТАБИЛИЗАЦИИ СПЕКТРОМЕТРИЧЕСКОГО ТРАКТА СЦИНТИЛЛЯЦИОННОГО БЛОКА ДЕТЕКТИРОВАНИЯ ГАММА-ИЗЛУЧЕНИЯ ПО РЕПЕРНОМУ ПИКУ | 2002 |
|
RU2225017C2 |
СПОСОБ КОНТРОЛЯ ДЕЛЯЩИХСЯ МАТЕРИАЛОВ | 2010 |
|
RU2435173C2 |
Использование: для стабилизации тракта регистрации гамма-излучения. Сущность изобретения заключается в том, что при стабилизации энергетической шкалы в процессе определения объемной плотности и эффективного атомного номера горных пород методом ГГК-ЛП сцинтилляционный детектор гамма-квантов окружают спрессованным порошком BaSO4 плотностью 0.1÷0.5 г/см2, напротив коллиматора плотность порошка BaSO4 меньше и составляет, например, 0.05÷0.10 г/см2. Часть гамма-излучения, проходящего через коллимационное окно, будет взаимодействовать с барием, находящимся в порошке BaSO4, окружающий детектор. Энергия характеристического излучения бария составляет 32 кэВ. Вследствие этого дополнительно к пику в области 32 кэВ, постоянно присутствующему в регистрируемом спектре, добавляется пик с такой же энергией, интенсивность которого пропорциональна интенсивности гамма квантов в низкоэнергетической области. Это позволяет получать при проведении измерений отчетливый пик в области 32 кэВ для стабилизации энергетической шкалы независимо от интенсивности гамма-излучения, проходящего через коллимационное окно. Технический результат: повышение качества стабилизации энергетической шкалы спектрометра независимо от мощности источников гамма-излучения для облучения горных пород и при исследовании пород с низким эффективным атомным номером, что, в свою очередь, повышает точность определения эффективного атомного номера горных пород. 6 ил.
Способ стабилизации энергетической шкалы при определении объемной плотности и эффективного атомного номера горных пород методом ГГК-ЛП, заключающийся в регистрации спектров рассеянного гамма-излучения на одном или нескольких расстояниях от источника гамма-квантов, с последующей привязкой энергетических шкал зарегистрированных спектров, причем стабилизация энергетических шкал спектров осуществляется по двум присутствующим в спектрах пикам: пику с энергией 662 кэВ от изотопа Cs-137 и пику с энергией 32 кэВ, образующегося в результате рентгеновского излучения изотопов Ва, образующихся при распаде Cs-137, при этом реперный источник Cs-137 размещен в непосредственной близости или внутри сцинтилляционного детектора, отличающийся тем, что с целью исключения эффекта «размытия» пика с энергией 32 кэВ и увеличения его интенсивности детектор окружают порошком BaSO4 плотностью 0.1÷0.5 г/см2, напротив коллиматора плотность порошка BaSO4 меньше и составляет, например, 0.05÷0.10 г/см2, благодаря этому часть гамма-излучения, проходящего через коллимационное окно, взаимодействует с барием, находящимся в порошке BaSO4, и возникающее при этом характеристическое излучения бария с энергией 32 кэВ увеличивает интенсивность реперного пика пропорционально интегральной загрузке сцинтилляционного детектора в низкоэнергетической области.
Механический грохот | 1922 |
|
SU41A1 |
Приспособление для плетения проволочного каркаса для железобетонных пустотелых камней | 1920 |
|
SU44A1 |
СПОСОБ СТАБИЛИЗАЦИИ ЭНЕРГЕТИЧЕСКОЙ ШКАЛЫ МНОГОКАНАЛЬНЫХ СЦИНТИЛЛЯЦИОННЫХ СПЕКТРОМЕТРОВ ГАММА-ИЗЛУЧЕНИЯ | 2008 |
|
RU2366979C1 |
СПОСОБ СТАБИЛИЗАЦИИ ЧУВСТВИТЕЛЬНОСТИ СЦИНТИЛЛЯЦИОННОГО БЛОКА ДЕТЕКТИРОВАНИЯ ГАММА-ИЗЛУЧЕНИЯ | 2008 |
|
RU2364892C1 |
СПОСОБ СТАБИЛИЗАЦИИ СПЕКТРОМЕТРА | 1995 |
|
RU2085968C1 |
US 2011211675 A1, 01.09.2011 | |||
US 5023449 A, 11.06.1991. |
Авторы
Даты
2020-06-04—Публикация
2018-04-05—Подача