СИСТЕМА МОНИТОРИНГА ВОЛОКОННО-ОПТИЧЕСКИХ ЛИНИЙ СВЯЗИ Российский патент 2020 года по МПК H04L12/26 G01R31/00 H04B10/07 

Описание патента на изобретение RU2723467C1

Изобретение относится преимущественно к технике связи, в частности, к оборудованию кабельных систем и может использоваться для идентификации некоторых параметров оптического сигнала в оптических волноводах. На основании таких параметров формируется система мониторинга состояния портов волоконно-оптических кабельных систем.

Известны системы мониторинга кабельных соединений в волоконно-оптических линиях связи такие как, решение от FiberWatch, NQMSfiber, ONMSi и др. Такие системы реализованы с применением схожих принципов функционирования - тестирование волокна осуществляется с помощью оптического импульсного рефлектометра, который диагностирует состояние волокна по обратному рассеянию световой волны при введении в волокно зондирующих импульсов. Все перечисленные системы мониторинга позволяют проводить измерения, обрабатывать, анализировать и сравнивать текущие рефлектограммы с эталонной. Некоторые системы имеют возможность реализации функций для автоматического обнаружения, локализации и индикации на географической карте возникшего повреждения волоконно-оптической линии связи (ВОЛС). Кроме того, в некоторых системах реализованы функции, позволяющие в автоматическом режиме определять и локализовать любые неоднородности в оптическом волокне будь то обрыв, деградация волокна или изгиб (например, несанкционированное подключение на изгибе волокна) и выдавать тип выявленной неисправности. Отличия систем заключаются в наборе функций мониторинга, а также в составах блоков удаленного тестирования и применяемом программном обеспечении (в том числе операционными системами и базами данных). Имеются не значительные различия в принципах реализации мониторинга активных волокон. Так, например, существует два типа мониторинга активных волокон: активный - с применением спектральных мультиплексоров (Wavelength Division Multiplexer - WDM), пассивный - косвенно, по состоянию «темных» волокон. Несмотря на широкий функционал таких систем, в них имеются и недостатки: не всегда имеется возможность использования «темного»/свободного волокна для мониторинга состояния линии в связи с ограниченной емкостью кабельной системы, внедрение спектральных мультиплексоров может быть невозможным по ограничениям информационной безопасности. Кроме того, внедрение описанных систем может потребовать существенной модернизации существующей волоконно-оптической кабельной системы, а стоимость подобных систем может составлять несколько миллионов рублей даже для компактной структурированной кабельной системы (СКС).

Наиболее близким аналогом заявленной системы является система мониторинга оптических кабельных соединений (патент РФ №2667711 приоритет от 04.04.2017, «Система мониторинга оптических кабельных соединений», автор: Хозяинов Борис Алексеевич, МПК: H04L 12/26, G01R 31/00, Н04В 10/07, опубликовано 24.09.2018 Бюл. №27). В описании к этому изобретению указано, что для мониторинга оптических кабельных соединений порт коммутационной панели оснащают датчиком, воспринимающим побочное электромагнитное излучение, возникающее возле оптического волокна из-за передачи по волокну оптических сигналов (в частности, сигналов для установки сетевого соединения). Временно изменяют сигнал для установки сетевого соединения и, сопоставляя время изменения сигнала для установки сетевого соединения и время изменения сигнала датчика, идентифицируют порт коммутационной панели, куда подключено сетевое устройство, передающее сигнал для установки сетевого соединения.

Недостатком такой системы является отсутствие возможности определения наличия оптического сигнала в волноводе на удаленной от источника стороне, т.к. побочное электромагнитное излучение будет крайне мало. Кроме того, данная система не определяет направление оптического сигнала, а также его мощность (или отклонение от пороговых значений мощности).

Технической проблемой является создание системы мониторинга оптических кабельных соединений, способной определять наличие/отсутствие в конкретном оптическом волноводе оптического сигнала, в том числе на удаленной стороне от источника, а также его направление и мощность (или отклонение от пороговых значений мощности) при условии, что затраты на внедрение такой системы будут минимальными и не потребуется какой либо существенной модернизации существующей кабельной системы.

Техническими результатами, на достижение которых направлено изобретение, являются расширение функциональных возможностей, повышение достоверности информации о занятости портов коммутационных панелей волоконно-оптических линий связи.

Данные технические результаты достигаются тем, что система мониторинга волоконно-оптических линий связи содержит, по крайней мере, одну оптическую коммутационную панель, которая содержит переходные адаптеры, к, по крайней мере, одному из которых подключен входной разъем соответствующего первого Y-образного несимметричного оптического разветвителя, первый выходной разъем которого соединен с первым выходным разъемом соответствующего второго Y-образного несимметричного оптического разветвителя, входной разъем которого предназначен для подключения окончания волоконно-оптической линий связи, вторые выходные разъемы каждого Y-образного несимметричного оптического разветвителя соединены с входами соответствующих фотоприемников, выход каждого из которых соединен с соответствующим входом соответствующего микроконтроллера, выход которого соединен с соответствующим входом блока обработки и передачи информации, выход которого является выходом системы мониторинга волоконно-оптических линий связи.

Расширение функциональных возможностей заключаются в:

- возможности определения наличия оптического сигнала в волноводе, в том числе на удаленной от источника стороне;

- возможности определения направления оптического сигнала в конкретном порту оптической коммутационной панели;

- возможности идентификации мощности оптического сигнала (или отклонения от пороговых значений мощности).

Расширение функциональных возможностей достигается применением первых и вторых Y-образных несимметричных оптических разветвителей, которые монтируются в разрыв оптического волокна с помощью разъемных соединений в оптической коммутационной панели, и подключения их к соответствующим входам микроконтроллера, в котором производится обработка и передача полученной информации на персональный компьютер (ПК) сотрудника эксплуатационной службы, на котором производится преобразование полученной от микроконтроллера информации о наличии и направлении оптического сигнала в порту оптической коммутационной панели, а также о его мощности (или отклонении от пороговых значений мощности) в удобный читаемый формат. Указанные признаки в совокупности повышают достоверность информации о занятости портов коммутационных панелей волоконно-оптических линий связи.

Применение заявляемой системы позволяет минимизировать затраты на внедрение системы мониторинга волоконно-оптических линий связи, обладающей необходимым функционалом, в то время как более дорогие системы обладают избыточным функционалом и в месте с тем, имеют ряд недостатков: необходимость применения «темного»/свободного волокна, отсутствие возможности определения направления сигнала, необходимость модернизации существующей кабельной системы, ограничения по информационной безопасности и др.

На фиг. 1 представлена схема варианта реализации системы мониторинга волоконно-оптических линий связи на примере одной коммутационной панели и показан монтаж оптических разветвителей. На фиг. 2 представлена схема функционирования системы мониторинга волоконно-оптических линий связи.

Система мониторинга волоконно-оптических линий связи (фиг. 1) включает в себя оптическую коммутационную панель 1, переходные адаптеры 21, …, 2k, первый Y-образный несимметричный оптический разветвитель 3, второй Y-образный несимметричный оптический разветвитель 4, первый 5 и второй 6 фотоприемники.

По крайней мере, к одному из переходных адаптеров 21,…, 2k (например, к переходному адаптеру 20 подключен входной разъем первого Y-образного несимметричного оптического разветвителя 3, первый выходной разъем (90%) которого соединен с первым выходным разъемом (90%) второго оптического разветвителя 4. Входной разъем второго Y-образного несимметричного оптического разветвителя 4 подключен к разъему пиг-тейла 7 (патч-корда), к которому закреплено окончание волновода оптического кабеля. Второй выходной разъем (10%) первого Y-образного несимметричного оптического разветвителя 3 соединен с входом фотоприемника 5. Второй выходной разъем (10%) второго Y-образного несимметричного оптического разветвителя 4 соединен с входом фотоприемника 6. Выход каждого фотоприемника 5(6) соединен с соответствующим входом микроконтроллера 8 (на фиг. 1 не показан, см. фиг. 2), выход которого соединен с соответствующим входом блока 9 обработки и передачи информации (фиг. 2), выход которого является выходом системы мониторинга волоконно-оптических линий связи.

Каждый задействованный порт каждой оптической коммутационной панели 1 представляет собой окончание волоконно-оптической линии связи, выполненное в виде стандартных оптических разъемов (SC, LC, SC и т.п.), размещенных в стандартном корпусе в виде коробки или панели.

Коммутационная панель 1 предназначена для выполнения коммутации кабельных линий.

Каждый переходной адаптер 2k оптической коммутационной панели 1 представляет собой пассивный соединитель, конструктив которого позволяет совмещать волноводы оптического патч-корда и пиг-тейла таким образом, что бы через них проходил оптический сигнал с минимальными потерями.

Y-образные несимметричные оптические разветвители 3, 4 представляют собой пассивное устройство, разделяющее поток световой энергии в различных пропорциях (с разной мощностью), передаваемый по оптоволокну. В частном случае применяется разветвитель, делящий оптический сигнал на две части: 90% на одном ответвлении, 10% на другом ответвлении. Входной разъем первого Y-образного несимметричного оптического разветвителя 3 предназначен для подключения к соответствующему переходному адаптеру 2k. Входной разъем второго Y-образного несимметричного оптического разветвителя предназначен для подключения окончания волоконно-оптической линий связи (пиг-тейл).

Пиг-тейл 7 (англ. Pig tail) представляет собой отрезок кабеля, оконеченный с одной стороны коннектором определенного типа. Соединение оптического пиг-тейла с волокном кабеля осуществляется с помощью сварки.

Фотоприемник 5 (6) предназначен для идентификации оптического сигнала в волноводе, а также его мощности с учетом применяемых в СКС длин волн (1310, 1550 нм для одномодовых элементов СКС и 850 нм для многомодовых).

Для каждой коммутационной панели 1 (или группы коммутационных панелей, в зависимости от количества задействованных портов) устанавливают соответствующий микроконтроллер 8 (фиг. 2), который формирует информацию для передачи на ПК сотрудника эксплуатационной службы. Микроконтроллер 8 предназначен для преобразования аналогового сигнала от фотоприемника в цифровой, а также для формирования и передачи информации о значениях мощности оптического сигнала в волноводах на блок обработки, интерфейс которого взаимодействует с одним из интерфейсов ПК 10 сотрудника (в частном случае RS232). Информация от микроконтроллеров 81, …, 8k передается в блок 9 обработки и передачи информации, который подключен непосредственно к ПК 10 сотрудника эксплуатационной службы.

Система мониторинга волоконно-оптических линий связи работает следующим образом.

Каждый фотоприемник 5 (6) отвечает за идентификацию определенного параметра соответствующего волноводу волоконно-оптической линий связи: наличие сигнала/направление/качество.

Каждый выход фотоприемника 5 (6) ассоциируется микроконтроллером 8 с определенным портом коммутационной панели (каждый вывод на отдельный порт). Кроме того, каждый вывод из пары фотоприемников 5 (6) отвечает за идентификацию направления сигнала в волноводу волоконно-оптической линий связи. Так, при прохождении сигнала по волноводу в определенном направлении, оптический сигнал идентифицируется только на одном из фотоприемников (из пары).

При идентификации наличия сигнала от одного из фотоприемников 5 (6) микроконтроллер 8 преобразует полученную информацию в цифровой вид (примерное числовое значение мощности) и сравнивает полученное значение с заранее заданными пороговыми значениями. Если мощность сигнала в волноводе выше порогового значения, то микроконтроллер 8 формирует информацию, о направлении сигнала в линии, а также что линия занята и качество сигнала в норме. Если мощность сигнала в волноводе ниже порогового значения, то микроконтроллер формирует информацию, о направлении сигнала в линии, а также что линия занята и качество сигнала ниже нормы, что может свидетельствовать о повреждении в линии.

В случае если микроконтроллер 8 не смог идентифицировать наличие оптического сигнала ни на одном из пары фотоприемников, то он формирует информацию, что линия свободна.

После того как микроконтроллер 8 сформировал информацию о поступающих от фотоприемников 5, 6 (наличие, направление, качество) сигналов, он передает ее на блок обработки, где аккумулируется информация от остальных микроконтроллеров. Далее блок 9 обработки и передачи информации передает суммарную информацию на ПК 10 сотрудника для применения в работе.

Похожие патенты RU2723467C1

название год авторы номер документа
СИСТЕМА МОНИТОРИНГА РАЗЪЕМНЫХ СОЕДИНЕНИЙ КАБЕЛЬНОГО ТРАКТА 2019
  • Чухонцев Андрей Павлович
  • Давыдов Александр Николаевич
  • Страбыкин Владислав Валерьевич
RU2715361C1
ОПТИЧЕСКИЙ РЕФЛЕКТОМЕТР 2007
  • Яковлев Михаил Яковлевич
  • Цуканов Владимир Николаевич
  • Кузнецов Виталий Анатольевич
RU2339929C1
СИСТЕМА МОНИТОРИНГА ОПТИЧЕСКИХ КАБЕЛЬНЫХ СОЕДИНЕНИЙ 2017
  • Хозяинов Борис Алексеевич
RU2667711C1
ВОЛОКОННО-ОПТИЧЕСКИЙ ГИРОСКОП 2010
  • Алейник Артем Сергеевич
  • Мешковский Игорь Касьянович
  • Стригалев Владимир Евгеньевич
RU2444704C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПОТЕРЬ ОПТИЧЕСКОЙ МОЩНОСТИ В РАЗЪЕМНОМ СОЕДИНЕНИИ ОПТИЧЕСКИХ ВОЛОКОН 2018
  • Пашин Станислав Сергеевич
  • Гиниатулина Алина Маратовна
  • Бурдин Антон Владимирович
RU2683802C1
ВОЛОКОННО-ОПТИЧЕСКИЙ ГИРОСКОП 2015
  • Мешковский Игорь Касьянович
  • Стригалев Владимир Евгеньевич
  • Пешехонов Владимир Григорьевич
  • Волынский Денис Валерьевич
  • Унтилов Александр Алексеевич
  • Цветков Валерий Николаевич
RU2589450C1
ОПТИЧЕСКАЯ СЕТЕВАЯ СИСТЕМА СВЯЗИ С ПРИЕМОПЕРЕДАЮЩИМ УСТРОЙСТВОМ ОПТИЧЕСКОГО ЛИНЕЙНОГО ТЕРМИНАЛА И СПОСОБ ЕЕ РАБОТЫ 2011
  • Пилер Дэвид
  • Тикнор Энтони Дж.
RU2564100C2
ОПТИЧЕСКИЙ РЕФЛЕКТОМЕТР 2007
  • Яковлев Михаил Яковлевич
  • Цуканов Владимир Николаевич
  • Кузнецов Виталий Анатольевич
RU2357220C2
РАСПРЕДЕЛИТЕЛЬНОЕ УСТРОЙСТВО С ВОЗМОЖНОСТЬЮ ДОБАВЛЕНИЯ РАЗВЕТВИТЕЛЕЙ 2013
  • Лиман Самюэль
  • Ван Бэлен Дэвид Ян Ирма
  • Колларт Стефан
  • Кнопс Винсен Франсуа Мишель
RU2670183C2
СИСТЕМА БЕЗОПАСНОСТИ ВОЛОКОННО-ОПТИЧЕСКОЙ ЛИНИИ СВЯЗИ И СПОСОБ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ ВОЛОКОННО-ОПТИЧЕСКОЙ ЛИНИИ СВЯЗИ 2019
  • Кирюшин Геннадий Васильевич
RU2698097C1

Иллюстрации к изобретению RU 2 723 467 C1

Реферат патента 2020 года СИСТЕМА МОНИТОРИНГА ВОЛОКОННО-ОПТИЧЕСКИХ ЛИНИЙ СВЯЗИ

Изобретение относится к технике связи. Технический результат – расширение функциональных возможностей и повышение достоверности информации о занятости портов коммутационных панелей волоконно-оптических линий связи. Для этого система мониторинга волоконно-оптических линий связи содержит по крайней мере одну оптическую коммутационную панель, которая содержит переходные адаптеры, к по крайней мере одному из которых подключен входной разъем соответствующего первого Y-образного несимметричного оптического разветвителя, первый выходной разъем которого соединен с первым выходным разъемом соответствующего второго Y-образного несимметричного оптического разветвителя, входной разъем которого предназначен для подключения окончания волоконно-оптической линии связи, вторые выходные разъемы каждого Y-образного несимметричного оптического разветвителя соединены с входами соответствующих фотоприемников, выход каждого из которых соединен с соответствующим входом соответствующего микроконтроллера, выход которого соединен с соответствующим входом блока обработки и передачи информации, выход которого является выходом системы мониторинга волоконно-оптических линий связи. 2 ил.

Формула изобретения RU 2 723 467 C1

Система мониторинга волоконно-оптических линий связи, содержащая по крайней мере одну оптическую коммутационную панель, которая содержит переходные адаптеры, к по крайней мере одному из которых подключен входной разъем соответствующего первого Y-образного несимметричного оптического разветвителя, первый выходной разъем которого соединен с первым выходным разъемом соответствующего второго Y-образного несимметричного оптического разветвителя, входной разъем которого предназначен для подключения окончания волоконно-оптической линии связи, вторые выходные разъемы каждого Y-образного несимметричного оптического разветвителя соединены с входами соответствующих фотоприемников, выход каждого из которых соединен с соответствующим входом соответствующего микроконтроллера, выход которого соединен с соответствующим входом блока обработки и передачи информации, выход которого является выходом системы мониторинга волоконно-оптических линий связи.

Документы, цитированные в отчете о поиске Патент 2020 года RU2723467C1

СИСТЕМА МОНИТОРИНГА ОПТИЧЕСКИХ КАБЕЛЬНЫХ СОЕДИНЕНИЙ 2017
  • Хозяинов Борис Алексеевич
RU2667711C1
СПОСОБ МОНИТОРИНГА ВОЛОКОННО-ОПТИЧЕСКОЙ СЕТИ 2004
  • Попов В.И.
  • Петриков Р.Г.
RU2247347C1
FR 2946426 B1, 07.06.2019
WO 2009068094 A1, 04.06.2009
WO 2009068095 A1, 04.06.2009.

RU 2 723 467 C1

Авторы

Чухонцев Андрей Павлович

Давыдов Александр Николаевич

Страбыкин Владислав Валерьевич

Даты

2020-06-11Публикация

2019-09-25Подача