Предложение относится к электрическому приводу движительного комплекса автономного транспортного средства, содержащему несколько генераторов электрической энергии и тяговый электродвигатель, выполненные на переменном токе и может быть использовано в качестве устройства регулирования тяги, упора, мощности и скорости транспортного средства. Технический результат предложения заключается в исключении силового согласующего трансформатора в силовом канале движительной установки, а также возможности реализации электрической передачи мощности тягового транспортного средства большой мощности с высокими показателями качества синтезируемого напряжения для питания тягового электродвигателя.
Известна электродвижительная установка судна (Григорьев А.В., Ляпидов К.С., Макаров Л.С. Единая электроэнергетическая установка гидрографического судна на базе системы электродвижения переменного тока. // Судостроение, 2006, №4, с. 33-34), содержащая первичные тепловые двигатели, с которыми механически соединены синхронные генераторы переменного тока, трехфазные обмотки статора которых подключены к трехфазной линии главного распределительного щита. К шинам трехфазной линии главного распределительного щита подключены потребители собственных нужд и первичные обмотки трансформаторов, к вторичным обмоткам которых подключены входы преобразователей частоты, к выходам которых подключены гребные электродвигатели переменного тока. Недостатком известной электроэнергетической установки является то, что преобразователи частоты выполнены по схеме двухзвенных преобразователей частоты с двухуровневым инветором напряжения, который имеет низкий показатель качества синтезируемого выходного напряжения для питания гребных электродвигателей, а также то, что преобразователи частоты питаются не напрямую от главного распределительного щита, а через согласующие трансформаторы, что снижает энергетические характеристики судовой электроэнергетической установки, повышает ее стоимость, массу и габариты. К недостаткам также относится искажение напряжения на шинах главного распределительного щита вызванные работой преобразователей частоты, так как мощность гребных электроприводов может значительно превышать мощность потребителей собственных нужд.
Известна электродвижительная установка (МПК В63Н 21/17, В63Н 23/24, патент RU 2529090 (С1), дата подачи заявки 27.03.2013, Калмыков А.Н., Кузнецов В.И., Сеньков А.П., Судовая электроэнергетическая установка), содержащая главные первичные тепловые двигатели, многофазные главные синхронные генераторы, главный распределительный щит, многоуровневые преобразователи частоты, гребные электродвигатели, аварийный дизель-генератор, аварийный распределительный щит, согласующие многофазные трансформаторы и потребители собственных нужд. На статоре каждого главного синхронного генератора размещены многофазные обмотки, подключенные к раздельным шинам главного распределительного щита к которому также подключены выпрямители многоуровневых преобразователей частоты и согласующие многообмоточные трансформаторы потребителей собственных нужд. К выходу многоуровневых преобразователей частоты подключены гребные электродвигатели, а к шинам вторичного распределительного щита подключены аварийный и стояночный дизель-генератор. Достоинством известной структуры является высокое качество синтезируемого напряжения на выходе многоуровневых преобразователей частоты для питания гребных электродвигателей. Недостатками известной судовой электроэнергетической установки является сложная структура системы распределения электроэнергии, наличие нестандартного, громоздкого и сложного электрооборудования, а также искажения напряжения на шинах главного распределительного щита вызванные работой преобразователей частоты. К недостаткам известной установки также можно отнести невозможность использования высокочастотного генераторного агрегата, так как шины главного распределительного щита должны быть рассчитаны на напряжение промышленной частоты 50 Гц для последующего питания потребителей собственных нужд.
Наиболее близким по технической сущности к заявляемому устройству является выбранная в качестве прототипа судовая электродвижительная установка (МПК В63Н 21/17, В63Н 23/24, Н02J 3/16, патент RU 2458819 (С1), Заявка: 2011107510/11, 25.02.2011, Васин И.М., Сеньков А.П., Токарев Л.Н., Судовая электроэнергетическая установка (варианты)). Известная установка содержит главные первичные тепловые двигатели, главные синхронные генераторы, главный распределительный щит, преобразователи частоты, гребные электродвигатели, аварийный дизель-генератор, аварийный распределительный щит, согласующие трансформаторы и потребители собственных нужд. На статоре каждого главного синхронного генератора размещены несколько изолированных друг от друга трехфазных обмоток, подключенных к раздельным шинам главного распределительного щита к которому также подключены выпрямители многоуровневых инверторов напряжения и согласующие трансформаторы потребителей собственных нужд. К выходу многоуровневых инверторов напряжения подключены гребные электродвигатели, а к шинам вторичного распределительного щита подключены аварийный и стояночный дизель-генератор. Технический результат такой конструкции обеспечивает повышение качества синтезируемого напряжения для питания гребных электродвигателей, а также повышение К.П.Д. и надежности судовой установки за счет исключения трансформаторов между линиями главного распределительного щита и преобразователями частоты. Недостатками известного прототипа является сложная структура системы распределения электроэнергии, большое количество коммутационных аппаратов, сложная схемотехническая реализация многоуровневых преобразователей частоты на основе многоуровневых инверторов напряжения, а также искажения напряжения на шинах главного распределительного щита вызванные работой преобразователей частоты. К недостаткам известной установки также можно отнести невозможность использования высокочастотного генераторного агрегата, так как шины главного распределительного щита должны быть рассчитаны на напряжение промышленной частоты 50 Гц для последующего питания потребителей собственных нужд, причем необходимо осуществлять стабилизацию этой частоты для обеспечения качественного питания потребителей собственных нужд. К недостаткам известной структуры также можно отнести отсутствие масштабируемости схемы и использование ее при больших единичных мощностях гребного электродвигателя.
Предлагаемая электроэнергетическая установка позволит исключить согласующий силовой трансформатор из схемы движительного комплекса с каскадным преобразователем частоты, а так же получить более высокое качество синтезируемого напряжения а, следовательно, и тока для питания гребного электродвигателя (практически синусоидальное напряжение на выходе электрического преобразователя). К достоинствам предложения также следует отнести возможность использования в долевых режимах работы электродвижительной установки только одного либо нескольких генераторных агрегатов при этом другие генераторные агрегаты могут быть отключены, следовательно, повышается экономичность при работе и значительно повышается ресурс первичных тепловых двигателей. Кроме того такое схемное решение позволит продолжить движение транспортного средства в случае выхода из строя одного или нескольких генераторных агрегатов а следовательно значительно повышается надежность и живучесть такой электродвижительной установки. Предложенный вариант движительного комплекса позволит реализовать электроэнергетическую установку для любого автономного транспортного средства и практически для любой установленной мощности тягового электродвигателя. Достоинством предложенной электроэнергетической установки является и то, что она может быть построена с использованием высокооборотных безредукторных главных генераторных агрегатов с выходным напряжением повышенной частоты а, следовательно, такое конструктивное решение позволит улучшить массогабаритные и энергетические характеристики. Таким образом, предлагаемая электроэнергетическая установка движительного комплекса позволяет улучшить эксплуатационные характеристики системы электродвижения, повысить надежность и характеризуется простой структурой построения и используемыми однотипными простыми и надежными элементами в составе каскадного электрического преобразователя - однофазными преобразователями частоты.
Описанные преимущества достигаются тем, что для управления тяговым электродвигателем используется каскадный электрический преобразователь, а для его питания предусмотрены несколько генераторных агрегатов способных работать как раздельно, так и вместе.
Поставленные задачи решаются благодаря тому, что в электродвижительной установке с каскадным электрическим преобразователем содержащей систему управления, первичные тепловые двигатели с электрическими генераторами переменного тока, автоматические выключатели, электрический преобразователь и тяговый электродвигатель, причем каждый первичный тепловой двигатель механически соединен с валом своего электрического генератора переменного тока, на статоре каждого электрического генератора переменного тока размещены изолированные друг от друга многофазные обмотки, к выходу каждой из которых подключен свой автоматический выключатель, а на выход электрического преобразователя подключен тяговый электродвигатель предусмотрены следующие отличия: электрический преобразователь состоит из однофазных преобразователей частоты, количество которых равно суммарному количеству многофазных обмоток электрических генераторов переменного тока и количеству автоматических выключателей, число которых кратно числу фаз тягового электродвигателя, причем выходы каждого автоматического выключателя подключены к входу своего однофазного преобразователя частоты, а однофазные преобразователи частоты сгруппированы по фазам электрического преобразователя, количество фаз электрического преобразователя равно количеству фаз тягового электродвигателя и количеству изолированных многофазных обмоток каждого из электрических генераторов переменного тока, причем каждая из фаз электрического преобразователя содержит такое количество однофазных преобразователей частоты, количество которых равно количеству всех однофазных преобразователей частоты разделенное на количество фаз тягового электродвигателя, причем каждый из однофазных преобразователей частоты в каждой из фаз электрического преобразователя подключен к разным электрическим генераторам переменного тока со своими первичными тепловыми двигателями, однофазные преобразователи частоты в каждой из фаз электрического преобразователя своими выходными контактами соединены последовательно, начала фаз электрического преобразователя соединены между собой, а концы фаз электрического преобразователя подключены к фазам тягового электродвигателя.
Сущность изобретения поясняется чертежами.
На Фиг. 1 - представлена электродвижительная установка с каскадным электрическим преобразователем, с тремя (S=3) фазами тягового электродвигателя, тремя фазами электрического преобразователя и таким же количеством изолированных друг от друга многофазных обмоток каждого из электрических генераторов, с двумя (G=2) электрическими генераторами и тепловыми двигателями, с шестью (N=6) однофазными преобразователями частоты и шестью многофазными изолированными обмотками электрических генераторов переменного тока N=G⋅S (где N - количество однофазных преобразователей частоты, количество автоматических выключателей, количество многофазных изолированных обмоток электрических генераторов переменного тока; S - количество фаз электрического преобразователя, количество фаз тягового электродвигателя, количество изолированных друг от друга многофазных обмоток каждого из электрических генераторов переменного тока, G - количество генераторов переменного тока и количество первичных тепловых двигателей), на Фиг. 2 - представлена электродвижительная установка с каскадным электрическим преобразователем с двумя электрическими генераторами переменного тока, каждый из которых содержит по три изолированные друг от друга трехфазные обмотки (шесть трехфазных изолированных обмоток электрических генераторов переменного тока), тремя фазами тягового электродвигателя и электрического преобразователя и шестью коммутационными аппаратами предназначенными для исключения вышедшего из строя однофазного преобразователя частоты, на Фиг. 3 - представлена электродвижительная установка с каскадным электрическим преобразователем с двумя электрическими генераторами переменного тока, каждый из которых содержит по три изолированные друг от друга трехфазные обмотки, тремя фазами тягового электродвигателя и электрического преобразователя с возможностью питания потребителей собственных нужд, на Фиг. 4 - представлена электродвижительная установка с несколькими независимыми тяговыми электродвигателями, на Фиг. 5 - представлена электродвижительная установка с тяговым электродвигателем выполненным в несколькими изолированными обмотками на статоре (многообмоточное исполнение), на Фиг. 6 - представлена электродвижительная установка с тяговым электродвигателем выполненным в многоякорном исполнении, на Фиг. 7 - представлена осцилограмма фазного напряжения электрического преобразователя который получает питание от двух электрических генераторов переменного тока которые выполнены с различным уровнем номинального напряжения; на Фиг. 8 - представлена таблица которая отображает связь числа электрических генераторов переменного тока и однофазных преобразователей частоты включенных последовательно в каждой из фаз электрического преобразователя с числом уровней напряжения на его выходе.
Электродвижительная установка с каскадным электрическим преобразователем, схема которой представлена на Фиг. 1 (для варианта электродвижительной установки с каскадным электрическим преобразователем с двумя электрическими генераторами и двумя тепловыми двигателями G=2, с тремя фазами тягового электродвигателя и тремя фазами электрического преобразователя и таким же количеством изолированных друг от друга многофазных обмоток каждого из электрических генераторов S=3, с шестью однофазными преобразователями частоты N=6), содержит систему управления 1, первичные тепловые двигатели 2-1÷2-G с электрическими генераторами переменного тока 3-1÷3-G, автоматические выключатели 4-1÷4-N, электрический преобразователь 5 и тяговый электродвигатель 6. Каждый первичный тепловой двигатель 2-1 (2-2÷2-G) механически соединен с валом своего электрического генератора переменного тока 3-1 (3-2÷3-G). На статоре каждого электрического генератора переменного тока 3-1 (3-2÷3-G) размещены изолированные друг от друга многофазные обмотки, к выходу каждой из которых подключен свой автоматический выключатель 4-1 (4-2÷4-G). На выход электрического преобразователя 5 подключен тяговый электродвигатель 6. Электрический преобразователь 5 состоит из однофазных преобразователей частоты 7-1÷7-N, количество которых равно суммарному количеству многофазных обмоток электрических генераторов переменного тока 3-1÷3-G и количеству автоматических выключателей 4-1÷4-N, число которых кратно числу фаз тягового электродвигателя 6. Выходы каждого автоматического выключателя 4-1÷4-N подключены к входу своего однофазного преобразователя частоты 7-1÷7-N. Однофазные преобразователи частоты 7-1÷7-N сгруппированы по фазам 8-1÷8-S электрического преобразователя 5. Количество фаз 8-1÷8-S электрического преобразователя 5 равно количеству фаз тягового электродвигателя 6 и количеству изолированных многофазных обмоток каждого из электрических генераторов переменного тока 3-1 (3-2÷-3-G). Каждая из фаз 8-1÷8-S электрического преобразователя 5 содержит такое количество однофазных преобразователей частоты 7-1÷7-N, количество которых равно количеству всех однофазных преобразователей частоты 7-1÷7-N разделенное на количество фаз тягового электродвигателя 6. Каждый из однофазных преобразователей частоты 7-1÷7-N в каждой из фаз 8-1÷8-S электрического преобразователя 5 подключен к разным электрическим генераторам переменного тока 3-1÷3-G со своими первичными тепловыми двигателями 2-1÷2-G. Однофазные преобразователи частоты 7-1÷7-N в каждой из фаз 8-1÷8-S электрического преобразователя 5 своими выходными контактами соединены последовательно. Начала фаз 8-1÷8-S электрического преобразователя 5 соединены между собой, а концы фаз 8-1÷8-S электрического преобразователя 5 подключены к фазам тягового электродвигателя 6.
где N - количество однофазных преобразователей частоты 7-1÷7-N, количество автоматических выключателей 4-1÷4-N, количество многофазных изолированных обмоток электрических генераторов переменного тока 3-1÷3-G; S - количество фаз 8-1÷8-S электрического преобразователя 5, количество фаз тягового электродвигателя 6, количество изолированных друг от друга многофазных обмоток каждого из электрических генераторов переменного тока 3-1÷3-G, G - количество генераторов переменного тока 3-1÷3-G и количество первичных тепловых двигателей 2-1÷2-G.
Электродвижительная установка с каскадным электрическим преобразователем, схема которой представлена на Фиг. 2 (для варианта электродвижительной установки транспортного средства, с каскадным электрическим преобразователем с двумя электрическими генераторами переменного тока G=2, тремя фазами тягового электродвигателя S=3, и шестью однофазными преобразователями частоты N=6), может дополнительно содержать коммутационные аппараты 9-1÷9-N, количество которых равно количеству однофазных преобразователей частоты 7-1÷7-N электрического преобразователя 5. Силовые контакты каждого из коммутационных аппаратов 9-1÷9-N подключены параллельно выходным контактам однофазного преобразователя частоты 7-1÷7-N.
Электродвижительная установка с каскадным электрическим преобразователем, схема которой представлена на Фиг. 3 (для варианта электродвижительной установки транспортного средства, с каскадным электрическим преобразователем с двумя электрическими генераторами переменного тока G=2, тремя фазами тягового электродвигателя S=3, и шестью однофазными преобразователями частоты N=6), может дополнительно содержать автоматические выключатели 10-l÷10-(N+2), дополнительный электрический преобразователь 11, главный распределительный щит 12, вспомогательный дизель-генератор 13, накопитель электрической энергии 14 с согласующим электрическим преобразователем 15, потребители собственных нужд 16. Часть автоматических выключателей 10-1÷10-N, количество которых равно суммарному количеству изолированных многофазных обмоток электрических генераторов переменного тока 3-1÷3-G, включены между изолированными многофазных обмотками электрических генераторов переменного тока 3-1÷3-G и входами дополнительного электрического преобразователя 11. Выход дополнительного электрического преобразователя 11 через автоматический выключатель 10-(N+1) подключен к главному распределительному щиту 12. К главному распределительному щиту 12 подключены: через автоматический выключатель 10-(N+2) вспомогательный дизель-генератор 13; через согласующий электрический преобразователь 15 накопитель энергии 14; потребители собственных нужд 16.
Электродвижительная установка транспортного средства, с каскадным электрическим преобразователем, схема которой представлена на Фиг. 4 (для варианта электродвижительной установки транспортного средства, с каскадным электрическим преобразователем с двумя электрическими генераторами переменного тока G=2, тремя фазами тягового электродвигателя S=3, и шестью однофазными преобразователями частоты N=6), может содержать несколько тяговых электродвигателей 6-1÷6-K со своими электрическими преобразователями 5-1÷5-K и со своими группами автоматических выключателей 17-1÷17-K. Входы каждой группы автоматических выключателей 17-1÷17-K подключены к своей изолированной многофазной обмотке электрических генераторов переменного тока 3-1÷3-G.
Электродвижительная установка транспортного средства, с каскадным электрическим преобразователем, схема которой представлена на Фиг. 5 (для варианта электродвижительной установки транспортного средства, с каскадным электрическим преобразователем с двумя электрическими генераторами переменного тока G=2, тремя фазами тягового электродвигателя S=3, и шестью однофазными преобразователями частоты N=6) может содержать тяговый электродвигатель 6 выполненный многообмоточным с изолированными обмотками на статоре и электрические преобразователи 5-1÷5-K со своими группами автоматических выключателей 17-1÷17-K. Количество электрических преобразователей 5-1÷5-K со своими группами автоматических выключателей 17-1÷17-K равно количеству изолированных обмоток тягового электродвигателя 6. Выходы электрических преобразователей 5-1÷5-K подключены каждый к своей изолированной обмотке тягового электродвигателя 6, а входы каждой группы автоматических выключателей 17-1÷17-K каждого из электрических преобразователей 5-1÷5-K подключены к своей изолированной многофазной обмотке электрических генераторов переменного тока 3-1÷3-G.
Электродвижительная установка транспортного средства, с каскадным электрическим преобразователем, схема которой представлена на Фиг. 6 (для варианта электродвижительной установки транспортного средства, с каскадным электрическим преобразователем с двумя электрическими генераторами переменного тока G=2, тремя фазами тягового электродвигателя S=3, и шестью однофазными преобразователями частоты N=6) может содержать тяговый электродвигатель 6 выполненный в много якорном исполнении и электрические преобразователи 5-1÷5-K со своими группами автоматических выключателей 17-1÷17-K. Количество электрических преобразователей 5-1÷5-K со своими группами автоматических выключателей 17-1÷17-K равно количеству якорей 18-1÷18-K тягового электродвигателя 6. Выходы электрических преобразователей 5-1÷5-K подключены каждый к своему якорю 18-1÷18-K тягового электродвигателя 6. Входы каждой группы автоматических выключателей 17-1÷17-K каждого из электрических преобразователей 5-1÷5-K подключены к своей изолированной обмотке электрических генераторов переменного тока 3-1÷3-G.
Электродвижительная установка транспортного средства, с каскадным электрическим преобразователем, схема которой представлена на Фиг. 1 (для варианта электродвижительной установки транспортного средства, с каскадным электрическим преобразователем с двумя электрическими генераторами переменного тока G=2, тремя фазами тягового электродвигателя S=3, и шестью однофазными преобразователями частоты N=6) может быть выполнена так, что электрические генераторы переменного тока 3-1÷3-G выполнены на различный уровень напряжения. Причем многофазные обмотки первого электрического генератора переменного тока 3-1, подключенные к однофазным преобразователям частоты 7-1, 7-2÷7-S первого уровня электрического преобразователя 5 выполнены на номинальное напряжение, которое составляет половину от номинального выходного напряжения электрического преобразователя 5. Номинальное напряжение изолированных многофазных обмоток второго 3-2 и последующего 3-3 (3-4÷3-G) электрических генераторов переменного тока подключенные к однофазным преобразователям частоты 7-1, 7-2÷7-S каждого последующего уровня 7-(S+1), 7-(S+2)÷7-S⋅2; 7-(2⋅S+1), в два раза меньше номинального напряжения изолированных обмоток генератора переменного тока 3-1, 3-2 (3-3÷3-(G-l)) предыдущего уровня.
Работа электродвижительной установки с каскадным электрическим преобразователем происходит следующим образом. В электродвижительной установке с каскадным электрическим преобразователем, представленной на Фиг. 1 источниками электрической энергии являются электрические генераторы переменного тока 3-1÷3-G приводимые во вращение каждый своим первичным тепловым двигателем 2-1÷2-G. Благодаря тому, что каждый из генераторов переменного тока 3-1÷3-G содержит изолированные многофазные обмотки, количество которых равно числу фаз 8-1÷8-S электрического преобразователя 5 и числу фаз тягового электродвигателя 6, появляется возможность независимого питания однофазных преобразователей частоты 7-1÷7-N электрического преобразователя 5. При этом электрический преобразователь 5 выполнен по схеме каскадного преобразователя частоты с использованием простых и надежных однофазных преобразователей частоты 7-1÷7-N сгруппированных по фазам 8-1÷8-S электрического преобразователя 5, количество которых равно количеству фаз тягового электродвигателя 6. Фазы 8-1÷8-S электрического преобразователя 5 состоят из групп последовательно соединенных однофазных преобразователей частоты 7-1÷7-N. Каждый однофазных преобразователей частоты 7-1÷7-N выполнен на стандартных низковольтных компонентах и может иметь различную схему, при этом на выходе каждого преобразователя частоты 7-1÷7-N могут быть синтезированы три различных мгновенных уровня выходного напряжения: Ud, 0 и -Ud, где Ud - средний уровень напряжения звена постоянного тока однофазного преобразователя частоты 7-1÷7-N. При этом мгновенные уровни напряжении синтезируемые однофазными преобразователями частоты 7-1÷7-N формируются согласованно для того чтобы получить требуемый уровень мгновенного фазного (линейного) напряжения на выходе электрического преобразователя 5 для питания тягового электродвигателя 6. Так при одинаковом номинальном напряжении каждого из электрических генераторов переменного тока 3-1÷3-G и при количестве последовательно включенных однофазных преобразователей частоты 7-1÷7-N, в каждой из фаз 8-1÷8-S электрического преобразователя 5, равным G обеспечивается 3+2⋅(G-1) уровней выходного фазного напряжения. При двух электрических генераторах переменного тока 3-1÷3-G (двух однофазных преобразователей частоты 7-1÷7-N фазы 8-1÷8-S электрического преобразователя 5) электродвижительной установки с каскадным электрическим преобразователем возможно получение пяти уровней фазного напряжения. При трех электрических генераторах переменного тока 3-1÷3-G (трех однофазных преобразователей частоты 7-1÷7-N фазы 8-1÷8-S электрического преобразователя 5) электродвижительной установки с каскадным электрическим преобразователем возможно получение семи уровней фазного напряжения и так далее. Благодаря такой топологии электрического преобразователя 5 можно синтезировать практически синусоидальное напряжение для питания тягового электродвигателя 6.
Несмотря на то, что частота коммутации в каждом однофазном преобразователе частоты 7-1÷7-N ограничена частотой коммутации используемых полностью управляемых силовых полупроводниковых ключей, появляется возможность сдвига мгновенного синтезируемого напряжения каждым из однофазных преобразователей частоты 7-1÷7-N при этом эквивалентная частота коммутации напряжения приложенного к нагрузке увеличивается кратно числу однофазных преобразователей частоты 7-1÷7-N в каждой из фаз 8-1÷8-S электрического преобразователя 5. Увеличение эквивалентной частоты коммутации ведет к уменьшению потерь на переключение силовых ключей в каждом из однофазных преобразователей частоты 7-1÷7-N. Предложенная структура электрического преобразователя 5 позволяет снизить скорость нарастания напряжения (dU/dt) на нагрузке и помогает избежать резонансов электромагнитных процессов происходящих в электроприводе.
В долевых режимах работы электродвижительной установки с каскадным электрическим преобразователем может быть использован один или несколько электрических генераторов переменного тока 3-1÷3-G из всего их количества. При этом в однофазных преобразователях частоты 7-1÷7-N подключенных к многофазным изолированным обмоткам неработающих электрических генераторов переменного тока 3-1÷3-G должны быть включены силовые транзисторы коллекторной или эмиттерной группы. Следует отметить, что в этом случае тяговый электродвигатель 6 будет работать с мощностью ограниченной мощностью работающих электрических генераторов переменного тока 3-1÷3-G, а так же будет снижено качество синтезируемого напряжения и уменьшен уровень мгновенного напряжения на выходе электрического преобразователя 5 на величину кратную выведенным из работы электрических генераторов переменного тока 3-1÷3-G. Такой режим работы электродвижительной установки с каскадным электрическим преобразователем обеспечит повышение коэффициента загрузки первичных тепловых двигателей и значительно увеличит их ресурс работы. В случает выхода из строя либо отказа одного (либо нескольких при работающем хотя бы одном) первичного теплового двигателя 2-1÷2-G либо электрического генератора переменного тока 3-1÷3-G электродвижительная установка с каскадным электрическим преобразователем остается работоспособной и будет продолжать работать с ограничением по выходной мощности на валу тягового электродвигателя 6.
На случай отказа одного из однофазных преобразователей частоты 7-1÷7-N в схеме электродвижительной установки транспортного средства, с каскадным электрическим преобразователем, изображенной на Фиг. 2 предусмотрена установка коммутационных аппаратов 9-1÷9-N. При возникновении аварийной ситуации или отказа одного из однофазных преобразователей частоты 7-1 (7-2÷7-N) коммутационный аппарат 9-1 (9-2÷9-N) зашунтирует выходные контакты неисправного однофазного преобразователя частоты 7-1 (7-2÷7-N) исключая его из последовательной цепи фазы 8-1 (8-2÷8-S) электрического преобразователя 5. При этом исправные однофазные преобразователи частоты 7-1÷7-N могут продолжать работать и синтезировать требуемые уровни напряжении электрического преобразователя 5 для питания тягового электродвигателя 6.
Для осуществления питания потребителей собственных нужд 16 от одного либо нескольких электрических генераторов переменного тока 3-1÷3-G электродвижительная установка транспортного средства, с каскадным электрическим преобразователем, схема которой представлена на Фиг. 3 снабжена дополнительным электрическим преобразователем 11 который согласует напряжения электрических генераторов переменного тока 3-1÷3-G и потребителей собственных нужд. Для дозагрузки по мощности электрических генераторов переменного тока 3-1÷3-G электродвижительная установка транспортного средства, с каскадным электрическим преобразователем может быть снабжена накопителем электрической энергии 14 с согласующим электрическим преобразователем 15. Накопитель электрической энергии 14 будет запасать энергию в долевых режимах работы электродвижительной установки транспортного средства, когда происходит работа с малой нагрузкой на валу тягового электродвигателя 6. В те моменты времени, когда идет разгон тягового электродвигателя 6 электрическая энергия для питания потребителей собственных нужд будет потребляться из накопителя энергии 14. Согласующий электрический преобразователь 15 осуществляет управление потоками энергии между источниками и потребителями данной энергосистемы. В случае стоянки транспортного средства, когда нет необходимости в работе первичных тепловых двигателей 2-1÷2-G, электрическая энергия для питания потребителей собственных нужд 16 может быть получена от накопителя электрической энергии 14 через согласующий электрический преобразователь 15 либо от вспомогательного дизель-генератора 13. Автоматические выключатели 10-l÷10-(N+2) осуществляют набор различных вариантов схемы для реализации всевозможных режимов работы электродвижительной установки транспортного средства.
Предложенные схемы электродвижительной установки транспортного средства, с каскадным электрическим преобразователем позволяют реализовать электрическую передачу на транспортном средстве практически неограниченной мощности, поскольку напряжение для питания тягового электродвигателя 6 набирается из напряжении низковольтных однофазных преобразователей частоты 7-1÷7-N которые имеют простую схемотехническую реализацию и высокую степень надежности. Еще одним достоинством предложенной электродвижительной установки транспортного средства с каскадным электрическим преобразователем является ее модульная структура, которая обеспечивает гибкость построения электродвижительной установки транспортного средства с различным исполнением и различным числом тяговых электродвигателей 6, с различным номинальным уровнем напряжении как электрических генераторов переменного тока 3-1÷3-G, так и тягового электродвигателя 6.
На Фиг. 4 изображена электродвижительная установка транспортного средства, в которой предусмотрена одновременная работа нескольких тяговых электродвигателей 6-1÷6-K со своими электрическими преобразователями 5-1÷5-K и со своими группами автоматических выключателей 17-1÷17-K.
Электродвижительная установка транспортного средства, с каскадным электрическим преобразователем, схема которой представлена на Фиг. 5 может содержать тяговый электродвигатель 6 выполненный многообмоточным с изолированными обмотками на статоре. Такое схемное решение позволит значительно поднять единичную установленную мощность тягового электродвигателя 6. В такой структуре каждая изолированная обмотка тягового электродвигателя 6 управляется своим электрическим преобразователем 5-1÷5-K. Огромным достоинством такой структуры (Фиг. 5) является то, что в случае отказа одного из электрических преобразователей 5-1÷5-K целиком электродвижительная установка транспортного средства может продолжать работу с пропорциональным уменьшением мощности на валу тягового электродвигателя 6.
Электродвижительная установка транспортного средства, с каскадным электрическим преобразователем, схема которой представлена на Фиг. 6 имеет абсолютно такие же функциональные свойства, что и структура, изображенная на Фиг. 5. Использование много якорного исполнения тягового электродвигателя 6 независимыми якорями 18-1÷18-K позволяет использовать стандартные электрические машины.
С целью повышения качества синтезируемого напряжения на выходе электрического преобразователя 5 электродвижительная установка транспортного средства, с каскадным электрическим преобразователем, схема которой представлена на Фиг. 1 может быть выполнена так, что электрические генераторы переменного тока 3-1÷3-G выполнены на разный уровень напряжения. При этом мгновенные напряжения, синтезируемые однофазными преобразователями частоты 7-1, 7-2÷7-S первого уровня и последующих уровней различны и определяются согласно закону: мгновенное выходное напряжение однофазного преобразователя частоты первого уровня составляет половину от номинального выходного напряжения электрического преобразователя 5, а мгновенные номинальные напряжения однофазных преобразователей частоты 7-1÷7-N каждого последующего уровня 7-(S+1), 7-(S+2)÷7-S⋅2; 7-(2⋅S+1), в два раза меньше номинального напряжения однофазных преобразователей частоты 7-1÷7-N предыдущего уровня. На Фиг. 7 представлена осциллограмма фазного напряжения электрического преобразователя 5 фаза 8-1 (8-2÷8-S) которого состоит, из двух последовательно соединенных однофазных преобразователей частоты 7-1÷7-N, которые выполнены с различными уровнями напряжения питания. Как видно на осциллограмме Фиг. 7 такой электрический преобразователь позволяет синтезировать девять уровней мгновенных напряжении при формировании фазного напряжения электрического преобразователя 5. На Фиг. 8 представлена таблица, которая наглядно отображает связь числа электрических генераторов переменного тока 3-1÷3-G и однофазных преобразователей частоты 7-1÷7-N, выполненных на разный уровень напряжении, включенных последовательно в каждой из фаз 8-1÷8-S электрического преобразователя 5 с числом уровней напряжения на выходе электрического преобразователя 5.
Таким образом, предложенная электроэнергетическая установка транспортного средства с каскадным электрическим преобразователем обладает следующими достоинствами:
- исключение силового согласующего трансформатора рассчитанного на полную мощность электропривода движительного комплекса транспортного средства (предложенная структура исключает недостатки использования каскадного электрического преобразователя в общепромышленном применении);
- высокая энергетическая эффективность, повышение коэффициента загрузки и повышение ресурса первичных тепловых двигателей за счет возможности использования такого их количества чтобы обеспечить требуемую текущую мощность на валу тягового электродвигателя;
- высокое качество синтезируемого напряжения для питания тягового электродвигателя, низкий уровень гармоник и нелинейных искажении в форме напряжения и тока;
- модульность предложенной структуры обеспечивает унификацию и стандартизацию используемых элементов, а также простоту диагностики, ремонта и замены вышедшего из строя элемента;
- масштабируемость обеспечивается гибкостью построения системы с возможностью повышения напряжения питания тягового электродвигателя путем подключения дополнительных однофазных преобразователей частоты;
- использование низковольтных элементов и компонентов электрического преобразователя при этом такая структура позволяет управлять мощной, высоковольтной нагрузкой;
- увеличение эквивалентной частоты коммутации электрического преобразователя по отношению к частоте коммутации каждого из однофазных преобразователей частоты;
- снижение скорости нарастания напряжения (dU/dt) на нагрузке и помогает избежать резонансов электромагнитных процессов происходящих в электроприводе тягового электродвигателя;
- электрический преобразователь собирается из простых однофазных преобразователей частоты;
- возможность использования высокооборотного первичного теплового двигателя, который обладает лучшими массогабаритными и энергетическими характеристиками, а так же значительно увеличенным ресурсом;
- предложенная структура позволяет реализовать электропривод движительного комплекса транспортного средства практически неограниченной мощности при ограничениях, наложенных на параметры используемых силовых ключей в однофазных электрических преобразователях;
- высокая степень надежности благодаря простым, отработанным и низковольтным однофазным преобразователям частоты, а также возможностью безболезненного исключения из работы, вышедшего из строя однофазного преобразователя частоты либо генераторного агрегата.
Изобретение относится к электрическим тяговым системам транспортных средств. Электродвижительная установка транспортного средства с каскадным электрическим преобразователем содержит систему управления, первичные тепловые двигатели с генераторами переменного тока, автоматические выключатели, электрический преобразователь и тяговый электродвигатель. На статоре генератора размещены изолированные друг от друга многофазные обмотки, к выходу каждой из которых подключен свой автоматический выключатель, а на выход электрического преобразователя подключен тяговый электродвигатель. Электрический преобразователь состоит из однофазных преобразователей частоты. Причем выходы каждого автоматического выключателя подключены к входу своего однофазного преобразователя частоты. Однофазные преобразователи частоты сгруппированы по фазам электрического преобразователя и в каждой из фаз электрического преобразователя соединены последовательно. Причем каждый из однофазных преобразователей в каждой из фаз подключен к разным генераторам. Начала фаз электрического преобразователя соединены между собой, а концы фаз электрического преобразователя подключены к фазам тягового электродвигателя. Технический результат заключается в улучшении эксплуатационных характеристик системы электродвижения. 8 ил.
Электродвижительная установка с каскадным электрическим преобразователем содержащая систему управления, первичные тепловые двигатели с электрическими генераторами переменного тока, автоматические выключатели, электрический преобразователь и тяговый электродвигатель, причем каждый первичный тепловой двигатель механически соединен с валом своего электрического генератора переменного тока, на статоре каждого электрического генератора переменного тока размещены изолированные друг от друга многофазные обмотки, к выходу каждой из которых подключен свой автоматический выключатель, а на выход электрического преобразователя подключен тяговый электродвигатель, отличающаяся тем, что электрический преобразователь состоит из однофазных преобразователей частоты, количество которых равно суммарному количеству многофазных обмоток электрических генераторов переменного тока и количеству автоматических выключателей, число которых кратно числу фаз тягового электродвигателя, причем выходы каждого автоматического выключателя подключены к входу своего однофазного преобразователя частоты, а однофазные преобразователи частоты сгруппированы по фазам электрического преобразователя, количество фаз электрического преобразователя равно количеству фаз тягового электродвигателя и количеству изолированных многофазных обмоток каждого из электрических генераторов переменного тока, причем каждая из фаз электрического преобразователя содержит такое количество однофазных преобразователей частоты, количество которых равно количеству всех однофазных преобразователей частоты, разделенное на количество фаз тягового электродвигателя, причем каждый из однофазных преобразователей частоты в каждой из фаз электрического преобразователя подключен к разным электрическим генераторам переменного тока со своими первичными тепловыми двигателями, однофазные преобразователи частоты в каждой из фаз электрического преобразователя своими выходными контактами соединены последовательно, начала фаз электрического преобразователя соединены между собой, а концы фаз электрического преобразователя подключены к фазам тягового электродвигателя.
СУДОВАЯ ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА (ВАРИАНТЫ) | 2011 |
|
RU2458819C1 |
СУДОВАЯ ЭЛЕКТРОЭНЕРГЕТИЧЕСКАЯ УСТАНОВКА | 2013 |
|
RU2529090C1 |
US 2018145578 A1, 24.05.2018 | |||
JP 2004336836 A, 25.11.2004. |
Авторы
Даты
2020-06-11—Публикация
2019-01-29—Подача