Способ определения заколонных перетоков Российский патент 2020 года по МПК E21B47/103 

Описание патента на изобретение RU2723808C2

Изобретение относится к нефтяной промышленности и может найти применение при определении заколонных перетоков скважины.

Известен способ определения заколонных перетоков (патент RU № 2510457 МПК Е21В 47/10, 27.03.2014 в Бюл. № 9), включающий регистрацию термограммы в скважине и ее анализ, отличающийся тем, что скважину оборудуют колонной труб со свабом и размещают низ колонны ниже перфорированного интервала продуктивного пласта, скважину оборудуют глубинным термометром на кабеле в межтрубном пространстве, поднимают сваб по колонне труб и одновременно поднимают по межтрубному пространству на кабеле глубинный термометр в режиме регистрации, при подъеме сваба организуют изменение направления потока жидкости в скважине от направления из продуктивного пласта вверх по скважине при добыче нефти, на направление от продуктивного пласта вниз к низу колонны труб, операции повторяют, регистрируют термограммы при измененном направлении потока флюидов в скважине, анализируют термограммы и сравнивают с термограммой остановленной скважины, отмечают на термограммах при измененном направлении потока флюидов в скважине увеличение температуры в исследуемом интервале, делают предположение о наличии заколонных перетоков сверху вниз с вышележащих в нижележащие пласты, делают заключение о поступлении флюида из вышележащего пласта по пути заколонных перетоков в перфорированный интервал.

Недостатками данного способа являются узкая область применения, связанная с невозможностью определения заколонных перетоков снизу-вверх, и высокая погрешность из-за невозможности отсечения температурных прогревов нижележащих пластов за счет дросселирующих перетоков в интервале перфорации.

Наиболее близким по технической сущности является способ определения затрубного движения жидкости в действующей скважине путем регистрации температуры вдоль ее ствола (ав. свидетельство SU № 665082 МПК Е21В 47/10, 30.05.1979 в Бюл. № 20), при этом регистрируют серию термограмм непосредственно после пуска скважины в эксплуатацию, причем о наличии затрубного движения жидкости судят по увеличенному темпу установления теплового поля.

Недостатками данного способа являются громоздкость вычислений и недостаточная точность из-за невозможности отсечения температурных прогревов нижележащих пластов за счет дросселирующих перетоков в интервале перфорации.

Технической задачей предполагаемого изобретения является создание простого и надежного способа определения заколонных перетоков за счет возможности отсечения от результатов термических исследований температурных прогревов нижележащих пластов, дросселирующих перетоков в интервале перфорации, благодаря определению зависимости температуры от давления и выделению участков с обратной зависимостью, которые характеризуют заколонные перетоки снизу-вверх.

Техничекая задача решается способом определения заколонных перетоков, включающим регистрации серии термограмм в различных режимах работы скважинного насоса, причем наличие затрубных перетоков определяют по темпу изменения температуры.

Новым является то, что исследования проводят при работающем штанговом насосе и при остановленном штанговом насосе в режиме притока, начиная с забойного давления выше давления насыщения пластового флюида газом, далее в интервалах температурных аномалий иниже перфорированных интервалов определяются зависимости температуры от давления и выделяются участки с обратной зависимостью, которые характеризуют заколонные перетоки снизу-вверх.

На фиг. 1 изображены графики определения температурных аномалий на скв. № 3640 и №4143 (соответственно).

На фиг. 2 изображены графики зависимостей температуры от давления на скв. №№3640.

На фиг. 3 изображены графики зависимостей температуры от давления на скв. №4143

Способ определения заколонных перетоков включает регистрации серии термограмм в различных режимах работы скважинного насоса: при работающем штанговом насосе и при остановленном штанговом насосе в режиме притока, начиная с забойного давления выше давления насыщения пластового флюида газом. Определяют температурные аномалии (температуру выше среднего температурного фона скважины). Далее в интервалах температурных аномалий и ниже перфорированных интервалов определяют зависимости (темп) температуры от давления и выделяют участки с обратной зависимостью, которые характеризуют заколонные перетоки снизу-вверх.

Температурные аномалии, возникающие ниже интервала перфорации, могут быть обусловлены как температурным прогревом нижележащих пластов за счет дросселирующих перфорированных, так и наличием заколонных перетоков.

Для определения природы этих аномалий была разработана технология исследования в межтрубном пространстве с многократными замерами методами термометрии. В этом случае исследования проводятся как при работающем штанговом насосе, так и в режиме притока – при остановленном штанговом насосе. Для анализа выбираются кривые термометрии в режиме притока, начиная с забойного давления выше давления насыщения пластового флюида газом.

При использовании данной технологии следует учитывать два процесса: процесс дросселирования жидкости и адиабатический эффект.

Величина температурного изменения дросселирующего флюида (жидкости) зависит от коэффициента Джоуля-Томсона ɛ и депрессии на пласт ΔР:

ΔТ = ɛ ΔР (1),

где ɛ - коэффициента Джоуля-Томсона для нефтей колеблется в пределах 0,04-0,06°С/атм, а для воды примерно равняется 0,02°С/атм (табл. 1).

Таблица 1

Жидкость Температура, °С ɛ, °С/атм Пресная вода 20 0,0216 40 0,0208 Минеральная вода 20 0,0225 Нефть Арланская 20 0,0415 Нефть Федоровская 20 0,0377 Нефть Ромашкинского м/р 45 0,0398 Газ метан (при Р = 1,73 МПа) 21 -0,4180 71 -0,2790

Эффект адиабатического расширения или сжатия проявляется при быстром изменении давления в скважине. При этом изменение температуры ΔТ связано с изменением давления ΔР приближенным соотношением:

ΔТ(t) = η ΔР(t) (2),

где η – это интегральный (средний) адиабатический коэффициент.

Значение η для воды составляет примерно 0,002°С/атм, для нефтей – порядка 0,014°С/атм (табл. 2).

Таблица 2

Жидкость Температура, °С з, °С/атм Пресная вода 20 0,0016 Минерализованная вода 20 0,0030 Нефть Арланская 20 0,0130 Нефть Федоровская 20 0,0137

Учитывая, что значение коэффициента Джоуля-Томсона (ɛ) на порядок превышает интегральный адиабатический коэффициент η, при забойных давлениях выше давления насыщения можно выявить следующие закономерности. Первая – температурные аномалии ниже перфорированного пласта, связанные с забойным давлением на временных замерах обратно-пропорциональной зависимостью, соответствуют заколонным перетокам (циркуляциям). Вторая – температурные аномалии ниже перфорированного пласта, связанные с забойным давлением на временных замерах прямо-пропорциональной зависимостью, соответствуют температурным прогревам нижележащих пластов.

Пример конкретного выполнения.

Технология была успешно опробована на двух скважинах НГДУ «Елховнефть»: №№3640, №4143 Ново-Елховского и Соколкинского месторождений соответственно, где были обнаружены температурные аномалии (см. фиг. 1).

В скважине №3640 был обнаружен заколонный переток с глубины 1713 м к перфорированному интервалу 1699,5-1703,8 метров (см. фиг. 2).

В скважине №4143 Соколкинского месторождения температурная аномалия в интервале 1175,6-1192 м обусловлена температурным прогревом нижележащих пород, что говорит о наличии прямой зависимости между температурой и забойным давлением на временных замерах (см. фиг. 3)

Предлагаемый способ определения заколонных перетоков прост и надежен за счет возможности отсечения от результатов термических исследований температурных прогревов нижележащих пластов, дросселирующих перетоков в интервале перфорации, благодаря определению зависимости температуры от давления и выделению участков с обратной зависимостью, которые характеризуют заколонные перетоки снизу-вверх.

Похожие патенты RU2723808C2

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ЗАКОЛОННЫХ ПЕРЕТОКОВ 2013
  • Хисамов Раис Салихович
  • Халимов Рустам Хамисович
  • Торикова Любовь Ивановна
  • Мусаев Гайса Лёмиевич
  • Билалов Исмагил Сабирович
RU2510457C1
Способ определения затрубного дви-жЕНия жидКОСТи B дЕйСТВующЕй СКВАжиНЕ 1979
  • Дворкин Исаак Львович
  • Валиуллин Рим Абдуллович
  • Филиппов Александр Иванович
  • Бикбулатов Бернард Мухаметович
  • Бровин Борис Зосимович
SU817232A1
СПОСОБ ОЦЕНКИ МЕЖПЛАСТОВЫХ ВНУТРИКОЛОННЫХ ПЕРЕТОКОВ В СКВАЖИНЕ 2018
  • Ипатов Андрей Иванович
  • Кременецкий Михаил Израилевич
  • Панарина Екатерина Павловна
RU2704068C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЗАКОЛОННОГО ПЕРЕТОКА ЖИДКОСТИ В СКВАЖИНЕ В ИНТЕРВАЛАХ ПЕРЕКРЫТЫХ НАСОСНО-КОМПРЕССОРНЫМИ ТРУБАМИ 2014
  • Мухамадиев Рамиль Сафиевич
  • Баженов Владимир Валентинович
  • Имаев Алик Исламгалеевич
  • Валиуллин Рим Абдуллович
  • Шарафутдинов Рамиль Фаизырович
  • Исмагилов Фанзат Завдатович
RU2569391C1
СПОСОБ ИССЛЕДОВАНИЯ СКВАЖИНЫ 2012
  • Ибрагимов Наиль Габдулбариевич
  • Мухаметов Ильгиз Махмутович
  • Марунин Дмитрий Александрович
RU2485310C1
Способ исследования нефтяных скважин 1979
  • Буевич Александр Степанович
  • Валиуллин Рим Абдуллович
  • Филиппов Александр Иванович
SU953196A1
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ РАБОТАЮЩИХ ИНТЕРВАЛОВ, ПРОФИЛЯ ПРИТОКА В ДОБЫВАЮЩЕЙ И ПРИЕМИСТОСТИ В НАГНЕТАТЕЛЬНОЙ СКВАЖИНЕ, НАЛИЧИЯ ЗАКОЛОННЫХ ПЕРЕТОКОВ 2023
  • Шарафутдинов Рамиль Фаизырович
  • Валиуллин Рим Абдуллович
  • Рамазанов Айрат Шайхуллинович
  • Канафин Ильдар Вакифович
RU2811172C1
Способ определения негерметичности заколонного пространства скважины 1983
  • Дворкин Исаак Львович
  • Халиков Габдулхак Абзалилович
  • Пацков Лев Леонидович
  • Филиппов Александр Иванович
  • Валиуллин Рим Абдуллович
  • Рамазанов Айрат Шайхуллович
  • Бикбулатов Бернард Мухаметович
  • Булгаков Разим Бареевич
  • Ершов Альберт Михайлович
  • Куликов Николай Степанович
  • Осипов Александр Михайлович
SU1104249A1
Способ исследования продуктивных пластов 1990
  • Валиуллин Рим Абдуллович
  • Рамазанов Айрат Шайхуллович
  • Шарафутдинов Рамиль Файзырович
  • Шилов Александр Александрович
  • Адиев Явдат Равилович
SU1776780A1
Способ определения заколонного перетока жидкости в добывающих и нагнетательных скважинах 2023
  • Шарафутдинов Рамиль Фаизырович
  • Валиуллин Рим Абдуллович
  • Рамазанов Айрат Шайхуллинович
  • Давлетшин Филюс Фанизович
  • Имаев Алик Исламгалеевич
  • Баженов Владимир Валентинович
RU2810775C1

Иллюстрации к изобретению RU 2 723 808 C2

Реферат патента 2020 года Способ определения заколонных перетоков

Изобретение относится к нефтяной промышленности и может найти применение при определении заколонных перетоков скважины. Способ определения заколонных перетоков включает регистрации серии термограмм в различных режимах работы скважинного насоса: при работающем штанговом насосе и при остановленном штанговом насосе в режиме притока, начиная с забойного давления выше давления насыщения пластового флюида газом. Определяют температурные аномалии - температуру выше среднего температурного фона скважины. Далее в интервалах температурных аномалий и ниже перфорированных интервалов определяют зависимости (темп) температуры от давления и выделяют участки с обратной зависимостью, которые характеризуют заколонные перетоки снизу-вверх. Предлагаемый способ определения заколонных перетоков прост и надежен за счет возможности отсечения от результатов термических исследований температурных прогревов нижележащих пластов, дросселирующих перетоков в интервале перфорации, благодаря определению зависимости температуры от давления и выделению участков с обратной зависимостью, которые характеризуют заколонные перетоки снизу-вверх. 3 ил., 2 табл.

Формула изобретения RU 2 723 808 C2

Способ определения заколонных перетоков, включающий регистрации серии термограмм в различных режимах работы скважинного насоса, причем наличие затрубных перетоков определяют по темпу изменения температуры, отличающийся тем, что исследования проводят при работающем штанговом насосе и при остановленном штанговом насосе в режиме притока, начиная с забойного давления выше давления насыщения пластового флюида газом, далее в интервалах температурных аномалий и ниже перфорированных интервалов определяют зависимости температуры от давления и выделяют участки с обратной зависимостью, которые характеризуют заколонные перетоки снизу вверх.

Документы, цитированные в отчете о поиске Патент 2020 года RU2723808C2

Способ определения затрубного движения жидкости 1978
  • Филиппов Александр Иванович
  • Рамазанов Айрат Шайхуллович
SU665082A1
Способ определения негерметичности заколонного пространства скважины 1983
  • Дворкин Исаак Львович
  • Халиков Габдулхак Абзалилович
  • Пацков Лев Леонидович
  • Филиппов Александр Иванович
  • Валиуллин Рим Абдуллович
  • Рамазанов Айрат Шайхуллович
  • Бикбулатов Бернард Мухаметович
  • Булгаков Разим Бареевич
  • Ершов Альберт Михайлович
  • Куликов Николай Степанович
  • Осипов Александр Михайлович
SU1104249A1
Способ исследования продуктивных пластов 1990
  • Валиуллин Рим Абдуллович
  • Рамазанов Айрат Шайхуллович
  • Шарафутдинов Рамиль Файзырович
  • Шилов Александр Александрович
  • Адиев Явдат Равилович
SU1776780A1
Способ выделения нефтяных и обводненных пластов в действующей скважине 1990
  • Валиуллин Рим Абдуллович
  • Шарафутдинов Рамиль Файзырович
  • Рамазанов Айрат Шайхуллович
  • Федотов Владимир Яковлевич
  • Яруллин Рашит Камильевич
  • Сорокина Валентина Архиповна
SU1788225A1
US 3795142 A1, 05.03.1974.

RU 2 723 808 C2

Авторы

Мусаев Гайса Лемиевич

Кухаркин Сергей Моисеевич

Юнусова Регина Гайсаевна

Даты

2020-06-17Публикация

2018-12-04Подача