СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ИЗОЛЯЦИИ ЦИФРОВОГО ТРАНСФОРМАТОРА ПО ПАРАМЕТРАМ ЧАСТИЧНЫХ РАЗРЯДОВ Российский патент 2020 года по МПК G01R31/12 

Описание патента на изобретение RU2724991C1

Предлагаемое изобретение относится к технике высоких напряжений и может быть использовано для диагностики технического состояния изоляции цифровых трансформаторов по параметрам частичных разрядов.

Широко известны цифровые трансформаторы тока и напряжения (например «Цифровой трансформатор тока и напряжения» по патенту на полезную модель №174411, МПК G01R 19/00, 2017 г., «Высоковольтное комбинированное цифровое устройство для измерения тока и напряжения» по патенту на полезную модель №159201 МПК G01R 19/00, 2017 г. и др.) содержащее питающий электромагнитный трансформатор, измерительный электромагнитный трансформатор тока, магнитотранзисторный преобразователь магнитного потока и пояс Роговского, охватывающие токопровод с измеряемым током, цилиндрический шунт с внутренней полостью, включенный в рассечку токопровода и первичный преобразователь напряжения, помещенный внутрь опорного изолятора. Цифровые измерительные трансформаторы предназначены для преобразования величин тока и напряжения в первичных цепях в цифровой код во вторичных цепях, содержащий информацию о мгновенных значениях токов и напряжений, которые используются для целей измерения, определения параметров качества электроэнергии, учета электроэнергии, релейной защиты и автоматики. При лабораторных, приемо-сдаточных испытаниях, а также в процессе эксплуатации изоляция цифровых измерительных трансформаторов подвергается воздействию высокого напряжения. При этом в толще изоляции, на границах раздела изоляционных материалов и вблизи проводящих частей возможно возникновение разрядных процессов различной интенсивности с различными механизмами развития. Некоторые из этих разрядов связаны с процессами ионизации околокатодного или околоанодного пространства или представляют собой поверхностные разряды, другая часть является следствием низкого качества изготовления изоляционных материалов или следствием развития внутреннего дефекта изоляции. Особую опасность для измерительных трансформаторов представляют именно внутренние частичные разряды, которые вызывают деградацию изоляции. Данные разряды начинаются как локальные перекрытия дефектных зон диэлектрика и со временем могут вызвать пробой изоляции.

Таким образом, для обеспечения надежной работы цифровых трансформаторов тока и напряжения и предотвращения аварий, связанных с повреждением изоляции частичными разрядами, необходимо осуществлять мониторинг разрядных процессов, определять их количественные и качественные характеристики, тенденции развития.

Известен способ мониторинга частичных разрядов в электрической системе (Патент на изобретение РФ №2532142 «Способ и система мониторинга частичных разрядов», MПК G01R 31/12 (2006.01), 2014 г), в котором: принимают импульс от электрической системы; идентифицируют, является ли импульс шумом или дублированным сигналом; если импульс является шумом или дублированным сигналом, тогда этот импульс отбрасывают; разбивают импульс на две или более частотные составляющие; нормализуют эти две или более частотные составляющие к виду максимального уровня; сравнивают две или более нормализованные частотные составляющие, связанные с принятым импульсом, с другим сохраненным множеством нормализованных, предварительно заданных частотных составляющих, связанных с другими импульсами, для идентифицирования сходных импульсов, указывающих известное состояние отказа; если импульс идентифицирован как импульс, указывающий известное состояние отказа, сохраняют данные в базе данных, связывая импульс с двумя или более нормализованными частотными составляющими и известным состоянием отказа; группируют спектр отказов импульсов со сходными нормализованными частотными составляющими в диаграмме разброса, сохраняемой в базе данных; если нормализованные частотные составляющие импульса не сходны с нормализованными частотными составляющими текущей группы, создают новую группу спектра отказов импульсов, сохраняемую в базе данных; и если импульс идентифицирован как указывающий известное состояние отказа, уведомляют пользователя о наличии состояния отказа.

К недостаткам данного способа можно отнести отсутствие фиксации процессов развития частичного разряда, интенсивности разрядов и их энергетических характеристик частичных разрядов, поскольку одно только спектральное содержание записываемых сигналов не дает полного представления о происходящих процессах старения изоляции.

Известен Способ мониторинга частичных разрядов в электрической системе (Патент на изобретение РФ №2505828 «Устройство мониторинга частичных разрядов», МПК G01R 31/12 (2006.01), 2014 г.), заключающийся в том, что определяют нижний порог срабатывания триггера и верхний порог срабатывания триггера, при этом нижний и верхний пороги срабатывания триггера являются уровнями амплитуды электрических импульсов, и верхний порог срабатывания триггера соответствует более высокой амплитуде, чем нижний порог срабатывания триггера, определяют длительность меньшего временного интервала, отслеживают по меньшей мере одну фазу электрической системы с целью обнаружения импульса на протяжении меньшего временного интервала, определяют максимальную амплитуду импульса, возникающего в электрической системе на протяжении меньшего временного интервала, устанавливают, превышает ли измеренная максимальная амплитуда импульса нижний порог срабатывания триггера и (или) верхний порог срабатывания триггера, присваивают импульсу коэффициент пульсации, если максимальная амплитуда импульса превышает нижний порог срабатывания триггера и (или) верхний порог срабатывания триггера, регистрируют импульс или касающуюся его информацию, если коэффициент пульсации, соответствующий импульсу, меньше предварительно заданного порогового коэффициента пульсаций в меньшем временном интервале, применяют временной сдвиг подвижного триггера, так что, если импульс превышает нижний порог срабатывания триггера, но не верхний порог срабатывания триггера, а коэффициент пульсации равен предварительно заданному числу пульсаций, регистрируют промежуток во времени на протяжении меньшего временного интервала, в котором это имеет место, и прекращают регистрацию импульсов с амплитудой, превышающей нижний порог срабатывания триггера, но не верхний порог срабатывания триггера, до наступления этого промежутка во времени в следующем меньшем временном интервале, и переустанавливают на ноль промежуток во времени временного сдвига подвижного триггера, и начинают регистрацию на протяжении следующего меньшего временного интервала импульсов с амплитудой, превышающей только нижний порог срабатывания триггера, после того, как величина временного сдвига подвижного триггера становится равной величине меньшего временного интервала, и сохраняют зарегистрированные импульсы в запоминающем устройстве.

Недостатком указанного способа является низкая достоверность результатов из-за отсутствия возможности контроля частотных характеристик высокочастотных импульсов, а так же фазы их возникновения относительно фазы питающего напряжения, и из-за низкой помехоустойчивости, обусловленной тем, что спектральный состав электромагнитных помех совпадает с частотным спектром импульсных полезных сигналов.

Известен способ диагностики высоковольтного оборудования по параметрам частичных разрядов (Патент на изобретение РФ №2536795, МПК G01R 31/12 (2006.01), 2014 г.), заключающийся в том, что электромагнитное поле частичных разрядов в изоляции воспринимают индуктивным и емкостным датчиками, выходные сигналы которых фильтруют, усиливают и умножают один на другой и в соответствии со знаком произведения формируют информативные сигналы, первый из этих сигналов пропорционален текущему среднему значению кажущегося заряда частичных разрядов, а второй - текущему среднему значению длительности импульсов тока, вызванных частичными разрядами, с помощью первого сигнала корректируется скорость изменения напряженности электрического поля в изоляции, обеспечивая стабилизацию текущего среднего значения кажущегося заряда частичных разрядов, а с помощью второго определяют зависимость длительности импульсов тока, вызванных частичными разрядами, от напряжения на высоковольтном вводе диагностируемого оборудования.

Недостатком указанного способа является низкая достоверность результатов из-за применения усилителей, которые вносят искажение в измеряемый высокочастотный сигнал и потери информации о частотном спектре и длительности импульсов высокочастотных разрядов в связи с применением усредняющей RC-цепи и амплитудного модулятора, что затрудняет возможность его применения для мониторинга состояния изоляции.

Все вышеперечисленные способы не применимы в условиях реальной эксплуатации для определения технического состояния цифрового трансформатора по параметрам частичных разрядов. Заявителю не известны способы определения технического состояния цифровых трансформаторов по параметрам частичных разрядов в изоляции, обладающие высокой точностью и обеспечивающие достоверность результатов.

Целью изобретения является разработка способа определения технического состояния изоляции цифрового трансформатора по параметрам частичных разрядов.

Технический результат изобретения заключается в своевременном достоверном и точном определении текущего технического состояния изоляции цифровых трансформаторов по параметрам частичных разрядов, в повышении надежности функционирования цифровых трансформаторов.

Технический результат достигается тем что, в способ определения технического состояния изоляции цифрового трансформатора по параметрам частичных разрядов, цифровой трансформатор, снабженный резистивным делителем напряжения, который размещен в изоляционном корпусе, содержащем заземленный нижний фланец из проводящего материала, дополнительно оснащают электродом емкостного элемента и двумя индуктивными датчиками, при этом первый датчик включают в цепь заземления электростатического экрана, а второй подключают между электродом емкостного элемента и нижним заземленным фланцем; напряжение промышленной частоты регистрируют с помощью резистивного делителя напряжения, высокочастотные импульсы напряжений регистрируют индуктивными датчиками, производят аналого-цифровое преобразование напряжения промышленной частоты и высокочастотных импульсов напряжений, для первой полуволны оцифрованных высокочастотных импульсов напряжений определяют полярность, по условию разнополярности первой полуволны высокочастотных импульсов напряжений выбирают полезный сигнал напряжения на первом индуктивном датчике, вычисляют максимальное значение в первой полуволне напряжения полезного сигнала, количество высокочастотных импульсов напряжений полезного сигнала за период изменения напряжения промышленной частоты, кажущийся заряд частичных разрядов, максимальное значение кажущегося заряда частичных разрядов за время наблюдения, среднее значение кажущегося заряда частичных разрядов за время наблюдения, средние ток и мощность частичных разрядов за период изменения напряжения промышленной частоты, энергию частичных разрядов; измеряют фазовые характеристики импульсных напряжений полезного сигнала относительно начальной фазы напряжения промышленной частоты, по которым определяют величину напряжения зажигания частичных разрядов, сравнивают величину кажущегося заряда частичных разрядов за время наблюдения с пороговым значением, по результатам сравнения делают выводы о состоянии изоляции измерительного трансформатора.

Сущность изобретения поясняется чертежами. На фиг. 1 приведено устройство, реализующее способ определения технического состояния цифрового трансформатора по параметрам частичных разрядов в изоляции. На фиг. 2 приведено распределение импульсных напряжений, формируемых токами частичных разрядов на индуктивных датчиках, относительно начальной фазы напряжения промышленной частоты.

На фиг. 1 изображен цифровой трансформатор, содержащий преобразователь тока 1 с электростатическим экраном 2 и резистивный делитель напряжения, размещенные в изоляционном корпусе 3. Резистивный делитель напряжения включает резистивный элемент верхнего плеча 4 и резистивный элемент нижнего плеча 5. Изоляционный корпус 3 содержит нижний заземленный фланец из проводящего материала (на чертеже не показан). Цифровой трансформатор дополнительно оснащен электродом емкостного элемента 6, первым индуктивным датчиком 7, который включен в цепь заземления электростатического экрана 2 и вторым индуктивным датчиком 8, который подключен между электродом емкостного элемента и нижним заземленным фланцем. Резистивный элемент верхнего плеча 4 и резистивный элемент нижнего плеча 5 резистивного делителя напряжения подключены через фильтр низких частот 9 к аналого-цифровому преобразователю низкочастотного сигнала 11. Индуктивные датчики 7 и 8 подключены через фильтр высоких частот 10 к аналого-цифровому преобразователю высокочастотного сигнала 12. Выходы аналого-цифровых преобразователей 11 и 12 подключены к контроллеру обработки цифрового сигнала 13, соединенного с блоком памяти 14, связанного через блок передачи данных 15, с внешней базой данных 16.

Способ определения технического состояния изоляции цифрового трансформатора по параметрам частичных разрядов осуществляется следующим образом. Цифровой трансформатор, снабженный резистивным делителем напряжения, размещенным в изоляционном корпусе 3, содержащем заземленный нижний фланец из проводящего материала, дополнительно оснащают электродом емкостного элемента 6, индуктивный датчик 7 включают в цепь заземления электростатического экрана 2, а индуктивный датчик 8 подключают между электродом емкостного элемента 6 и нижним заземленным фланцем. В процессе работы цифрового трансформатора к его изоляции приложено фазное напряжение промышленной частоты, которое после масштабного преобразования в резистивном элементе верхнего плеча 4 резистивного делителя напряжения регистрируют на резистивном элементе нижнего плеча 5 резистивного делителя напряжения. Зарегистрированный сигнал подвергают низкочастотной фильтрации в фильтре низких частот 9 для исключения высокочастотных помех и оцифровывают в аналого-цифровом преобразователе низкочастотного сигнала 11. Под воздействием высокого напряжения в толще изоляции, на границах раздела изоляционных материалов и вблизи проводящих частей возможно возникновение разрядных процессов. При этом на дефектных участках изоляции происходит кратковременное уменьшение напряжения, вызывающие перераспределение зарядов на всех участках изоляционной конструкции, что сопровождается появлением высокочастотных импульсов напряжения, которые регистрируют индуктивными датчиками 7 и 8. Зарегистрированные сигналы подают на вход фильтра высоких частот 10 для исключения низкочастотных помех и оцифровывают в аналого-цифровом преобразователе высокочастотного сигнала 12.

В контроллере обработки цифрового сигнала 13 для первой полуволны оцифрованных высокочастотных импульсов напряжений определяют полярность, по условию разнополярности первой полуволны высокочастотных импульсов напряжений, зарегистрированных на индуктивных датчиках 7 и 8 выбирают полезный сигнал на первым индуктивным датчиком 7 в цепи заземления электростатического экрана 2, вычисляют: максимальное значение напряжения в первой полуволне напряжения полезного сигнала, количество высокочастотных импульсов напряжения полезного сигнала за период изменения напряжения промышленной частоты, по максимальному значению напряжения первой полуволны вычисляют кажущийся заряд частичных разрядов, максимальное значение кажущегося заряда частичных разрядов за время наблюдения, среднее значение кажущегося заряда частичных разрядов за время наблюдения, средние ток и мощность частичных разрядов за период изменения напряжения промышленной частоты, энергию частичных разрядов.

Полученные результаты вычислений сохраняют в блоке памяти 14 и через интерфейс 15 передают во внешнюю базу данных 16. Хранящуюся во внешней базе данных 16 информацию используют при измерении фазовых характеристик импульсных напряжений полезного сигнала относительно начальной фазы напряжения промышленной частоты (фиг. 2), по которым определяют величину напряжения зажигания частичных разрядов, сравнивают величину кажущегося заряда частичных разрядов за время наблюдения с пороговыми значениями, определенными опытным путем или регламентируемыми соответствующими стандартами (например, ГОСТ 7746-2015 и ГОСТ 1983-2015), по результатам сравнения делают выводы о состоянии изоляции и возможности дальнейшей эксплуатации измерительного трансформатора.

Предлагаемый способ позволяет осуществлять мониторинг разрядных процессов в изоляции цифровых измерительных трансформаторов, определять их количественные и качественные характеристики, выявлять на ранней стадии возникновение дефектов внутренней изоляции по параметрам частичных разрядов, предотвращать аварии, связанные с повреждением изоляции частичными разрядами, обеспечивая повышение надежности функционирования цифровых трансформаторов.

Похожие патенты RU2724991C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЦИФРОВОГО ТРАНСФОРМАТОРА ПО ПАРАМЕТРАМ ЧАСТИЧНЫХ РАЗРЯДОВ В ИЗОЛЯЦИИ 2018
  • Литвинов Сергей Николаевич
  • Гусенков Алексей Васильевич
  • Лебедев Владимир Дмитриевич
  • Яблоков Андрей Анатольевич
RU2700368C1
УСТРОЙСТВО КОНТРОЛЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЦИФРОВОГО ТРАНСФОРМАТОРА ПО ПАРАМЕТРАМ ЧАСТИЧНЫХ РАЗРЯДОВ В ИЗОЛЯЦИИ 2018
  • Лебедев Владимир Дмитриевич
  • Литвинов Сергей Николаевич
  • Гусенков Алексей Васильевич
  • Яблоков Андрей Анатольевич
RU2700369C1
ДАТЧИК ДЛЯ МОНИТОРИНГА ВЫСОКОВОЛЬТНОЙ ИЗОЛЯЦИИ 2006
  • Стьюарт Брайан Г.
  • Несбитт Алан
  • Макмикин Скотт Г.
RU2425389C2
УСТРОЙСТВО НЕПРЕРЫВНОГО КОНТРОЛЯ СИГНАЛА ЧАСТИЧНЫХ РАЗРЯДОВ В ИЗОЛЯЦИИ ТРЕХФАЗНЫХ ВЫСОКОВОЛЬТНЫХ АППАРАТОВ В УСЛОВИЯХ ЭКСПЛУАТАЦИИ 2009
  • Поляков Валерий Сергеевич
RU2393494C1
Способ диагностирования электрической изоляции в процессе дистанционного компьютерного мониторинга технологического оборудования 2018
  • Костюков Алексей Владимирович
  • Бойченко Сергей Николаевич
  • Бурда Евгений Александрович
  • Жильцов Валерий Васильевич
RU2709604C1
СПОСОБ ДИАГНОСТИКИ ВЫСОКОВОЛЬТНОГО ОБОРУДОВАНИЯ 2010
  • Шахнин Вадим Анатольевич
  • Моногаров Олег Игоревич
RU2434236C1
СПОСОБ ДИАГНОСТИКИ ВЫСОКОВОЛЬТНОГО ОБОРУДОВАНИЯ ПО ПАРАМЕТРАМ ЧАСТИЧНЫХ РАЗРЯДОВ 2013
  • Шахнин Вадим Анатольевич
  • Мироненко Ярослав Владимирович
  • Чебрякова Юлия Сергеевна
RU2536795C1
СПОСОБ НАПРАВЛЕННОЙ ЗАЩИТЫ ОТ ОДНОФАЗНОГО ЗАМЫКАНИЯ НА ЗЕМЛЮ В ЭЛЕКТРИЧЕСКОЙ СЕТИ ПЕРЕМЕННОГО ТОКА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1995
  • Малеев Александр Владимирович
  • Шелеметьев Игорь Анатольевич
  • Кузнецов Владимир Елистратович
  • Ефимов Юрий Константинович
RU2097893C1
Способ интенсификации добычи нефти, ликвидации и предотвращения отложений в нефтегазодобывающих и нагнетательных скважинах и устройство для его реализации 2017
  • Андрианов Станислав Леонидович
  • Должанский Сергей Константинович
  • Иконников Юрий Андреевич
  • Мельников Виктор Ильич
  • Смелов Владимир Валентинович
RU2666830C1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ НАЛИЧИЯ ВОЛОКОН И НИТЕЙ 1993
  • Бесов Ю.Н.
  • Лошкарева Т.С.
  • Нурисламов Р.М.
  • Осадчий К.А.
  • Старков В.Г.
RU2087602C1

Иллюстрации к изобретению RU 2 724 991 C1

Реферат патента 2020 года СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ИЗОЛЯЦИИ ЦИФРОВОГО ТРАНСФОРМАТОРА ПО ПАРАМЕТРАМ ЧАСТИЧНЫХ РАЗРЯДОВ

Изобретение относится к технике высоких напряжений и может быть использовано для диагностики технического состояния изоляции цифровых трансформаторов по параметрам частичных разрядов. В способе определения технического состояния изоляции цифрового трансформатора по параметрам частичных разрядов цифровой трансформатор, снабженный резистивным делителем напряжения, который размещен в изоляционном корпусе, содержащем заземленный нижний фланец из проводящего материала, дополнительно оснащают электродом емкостного элемента и двумя индуктивными датчиками, при этом первый датчик включают в цепь заземления электростатического экрана, а второй подключают между электродом емкостного элемента и нижним заземленным фланцем; напряжение промышленной частоты регистрируют с помощью резистивного делителя напряжения, высокочастотные импульсы напряжений регистрируют индуктивными датчиками, производят аналого-цифровое преобразование напряжения промышленной частоты и высокочастотных импульсов напряжений, для первой полуволны оцифрованных высокочастотных импульсов напряжений определяют полярность, по условию разнополярности первой полуволны высокочастотных импульсов напряжений выбирают полезный сигнал напряжения на первом индуктивном датчике, вычисляют максимальное значение в первой полуволне напряжения полезного сигнала, количество высокочастотных импульсов напряжений полезного сигнала за период изменения напряжения промышленной частоты, кажущийся заряд частичных разрядов, максимальное значение кажущегося заряда частичных разрядов за время наблюдения, среднее значение кажущегося заряда частичных разрядов за время наблюдения, средние ток и мощность частичных разрядов за период изменения напряжения промышленной частоты, энергию частичных разрядов; измеряют фазовые характеристики импульсных напряжений полезного сигнала относительно начальной фазы напряжения промышленной частоты, по которым определяют величину напряжения зажигания частичных разрядов, сравнивают величину кажущегося заряда частичных разрядов за время наблюдения с пороговым значением, по результатам сравнения делают выводы о состоянии изоляции измерительного трансформатора. Технический результат: своевременное достоверное и точное определение текущего технического состояния изоляции цифровых трансформаторов, повышение надежности функционирования цифровых трансформаторов. 2 ил.

Формула изобретения RU 2 724 991 C1

Способ определения технического состояния изоляции цифрового трансформатора по параметрам частичных разрядов, отличающийся тем, что цифровой трансформатор, снабженный резистивным делителем напряжения, который размещен в изоляционном корпусе, содержащем заземленный нижний фланец из проводящего материала, дополнительно оснащают электродом емкостного элемента и двумя индуктивными датчиками, при этом первый датчик включают в цепь заземления электростатического экрана, а второй подключают между электродом емкостного элемента и нижним заземленным фланцем; напряжение промышленной частоты регистрируют с помощью резистивного делителя напряжения, высокочастотные импульсы напряжений регистрируют индуктивными датчиками, производят аналого-цифровое преобразование напряжения промышленной частоты и высокочастотных импульсов напряжений, для первой полуволны оцифрованных высокочастотных импульсов напряжений определяют полярность, по условию разнополярности первой полуволны высокочастотных импульсов напряжений выбирают полезный сигнал напряжения на первом индуктивном датчике, вычисляют максимальное значение в первой полуволне напряжения полезного сигнала, количество высокочастотных импульсов напряжений полезного сигнала за период изменения напряжения промышленной частоты, кажущийся заряд частичных разрядов, максимальное значение кажущегося заряда частичных разрядов за время наблюдения, среднее значение кажущегося заряда частичных разрядов за время наблюдения, средние ток и мощность частичных разрядов за период изменения напряжения промышленной частоты, энергию частичных разрядов; измеряют фазовые характеристики импульсных напряжений полезного сигнала относительно начальной фазы напряжения промышленной частоты, по которым определяют величину напряжения зажигания частичных разрядов, сравнивают величину кажущегося заряда частичных разрядов за время наблюдения с пороговым значением, по результатам сравнения делают выводы о состоянии изоляции измерительного трансформатора.

Документы, цитированные в отчете о поиске Патент 2020 года RU2724991C1

СПОСОБ ОПРЕДЕЛЕНИЯ ТЕХНИЧЕСКОГО СОСТОЯНИЯ ЦИФРОВОГО ТРАНСФОРМАТОРА ПО ПАРАМЕТРАМ ЧАСТИЧНЫХ РАЗРЯДОВ В ИЗОЛЯЦИИ 2018
  • Литвинов Сергей Николаевич
  • Гусенков Алексей Васильевич
  • Лебедев Владимир Дмитриевич
  • Яблоков Андрей Анатольевич
RU2700368C1
СПОСОБ КОНТРОЛЯ ХАРАКТЕРИСТИК ЧАСТИЧНЫХ РАЗРЯДОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1991
  • Аксенов Юрий Петрович
  • Арсентьев Виктор Михайлович
  • Головков Михаил Юрьевич
  • Ляпин Андрей Григорьевич
  • Шевцов Эдуард Николаевич
RU2019850C1
СПОСОБ ИЗМЕРЕНИЯ ХАРАКТЕРИСТИК ЧАСТИЧНЫХ РАЗРЯДОВ 2008
  • Вдовико Василий Павлович
RU2374657C1
Способ изготовления электрических сопротивлений посредством осаждения слоя проводника на поверхности изолятора 1921
  • Андреев Н.Н.
  • Ландсберг Г.С.
SU19A1
CN 0206710490 U, 05.12.2017.

RU 2 724 991 C1

Авторы

Лебедев Владимир Дмитриевич

Литвинов Сергей Николаевич

Словесный Сергей Алексеевич

Гусенков Алексей Васильевич

Даты

2020-06-29Публикация

2019-09-03Подача