Способ формирования видеосигнала в телевизионно-компьютерной системе для контроля промышленных изделий, имеющих форму кругового кольца Российский патент 2020 года по МПК H04N5/374 H04N7/18 

Описание патента на изобретение RU2725973C1

Предлагаемое изобретение на способ относится к телевизионно-компьютерной технике и ориентировано на использование в телевизионных камерах, выполненных на базе двух однокристальных сенсоров: «кольцевого» и «прямоугольного» (матричного), - изготовленных по технологии комплементарных структур «металл-окисел-полупроводник» (КМОП).

Эти камеры обеспечивают формирование цифрового видеосигнала «кольцевого» кадра полностью и отдельно его выбранного фрагмента с повышенной четкостью, а предназначены для телевизионно-компьютерного наблюдения объектов, имеющих форму кругового кольца. К подобным объектам (изделиям) промышленного производства могут быть отнесены диски, колеса, фрезы, а также другие детали и принадлежности многочисленных рабочих и транспортных машин.

Например, зубчатое колесо - основная деталь зубчатой передачи в виде диска с зубьями, входящими в зацепление с зубьями другого колеса [1, с. 174]. Управление работой такой телевизионной камеры, регистрация ее видеосигналов и их воспроизведение производится при помощи компьютеров, объединенных в локальную вычислительную сеть.

Наиболее близким по технической сущности к заявляемому изобретению следует считать способ формирования видеосигнала в телевизионно-компьютерной системе для контроля промышленных изделий, имеющих форму кругового кольца [2], заключающийся в том, что в телевизионной камере оптическое изображение контролируемого объекта проецируют на мишень фотоприемника, изготовленного по технологии КМОП, причем мишень сенсора, имеет форму кругового кольца и состоит из фотодиодных активных пикселов, каждый из которых имеет усилитель с переменным коэффициентом усиления K для каждой текущей «кольцевой» строки, и встроенный аналого-цифровой преобразователь (АЦП), обеспечивающий передачу видеосигнала активного пиксела на шину видео, которая объединяет все активные пикселы мишени в столбцы, при этом столбцы мишени и параллельные им шины видео этих столбцов расположены вдоль радиальных направлений от воображаемого центра кругового кольца к его внешней периферии, причем управление АЦП для пикселов, расположенных вдоль каждой «кольцевой» строки, осуществляется при помощи отдельно взятой «кольцевой» шины, общее количество которых определяет число строк в сенсоре, а количество радиальных шин видео - число элементов (пикселов) в каждой строке сенсора, причем светочувствительная площадь пикселов каждого активного столбца мишени различна от строки к строке, увеличиваясь по мере движения к внешней периферии сенсора, а изменение коэффициента усиления Km активного пиксела для каждой текущей «кольцевой» строки сенсора выполняется по соотношению:

где Δ1 и Δm - соответственно светочувствительная площадь активного пиксела для первой и текущей строки считывания в «кольцевом» сенсоре, обеспечивая одинаковую величину считывающей апертуры в пределах всего «кольцевого» растра изображения;

при этом на общем кристалле фотоприемника размещаются и блоки, выполняющие развертку и формирование выходного напряжения цифрового видеосигнала, а именно: регистр кадровой развертки, осуществляющий выбор строки; коммутаторы видеосигнала для каждого столбца, управляемые с соответствующего выхода мультиплексора строчной развертки, и обеспечивающие передачу видеосигнала на выходе каждой шины видео столбца на шину видео строки, выход которой является выходом «Видео» фотоприемника, при этом в активных пикселах мишени сенсора с периодом кадров осуществляют накопление зарядовых пакетов текущего кадра и одновременно считывание видеоинформации предыдущего кадра последовательно один за другим для каждого пиксела отдельно взятой строки мишени и последовательного строка за строкой для мишени в целом, формируя на выходе фотоприемника в цифровом виде напряжение выходного видеосигнала сенсора, формируют на выходе «видео» телевизионной камеры цифровой телевизионный сигнал, который транслируют на вход «видео» компьютера, при этом в компьютере для реализации возможности контроля изделия целиком (полностью) выполняют электрическое вписывание изображения «кольцевого» кадра в прямоугольный растр компьютерного монитора, а для реализации возможности контроля отдельных участков (фрагментов) этого изделия «кольцевой» кадр считывают из оперативной памяти компьютера при помощи m «прямоугольных» кадров, число которых удовлетворяет соотношению:

где γ - величина захватываемого углового пространства в градусах для участка контролируемого изделия.

В прототипе [2] обеспечивается возможность наблюдения промышленного изделия полностью и дополнительно его фрагментов. При этом гарантируется повышенная степень интеграции телевизионной камеры за счет выполнения «кольцевого» сенсора по технологии КМОП, позволяющей разместить на его кристалле и необходимое электронное «обрамление фотоприемника.

Недостаток прототипа - ограниченная разрешающая способность вдоль строки для «прямоугольных» кадров-фрагментов из-за уменьшения в m раз для каждого из них количества светочувствительных элементов (пикселов) по отношению к «кольцевому» изображению.

Задачей изобретения является увеличение разрешающей способности наблюдаемых раздельно фрагментов «кольцевого» кадра при помощи дополнительного фотоприемника, который является «прямоугольным» (матричным) сенсором, при обеспечении одинаковой чувствительности обоих фотоэлектрических каналов.

Поставленная задача в заявляемом способе формирования видеосигнала решается тем, что, как и в прототипе [2], в телевизионной камере оптическое изображение контролируемого объекта проецируют на мишень фотоприемника, изготовленного по технологии КМОП, причем мишень сенсора, имеет форму кругового кольца и состоит из фотодиодных активных пикселов, каждый из которых имеет усилитель с переменным коэффициентом усиления K для каждой текущей «кольцевой» строки, и встроенный АЦП, обеспечивающий передачу видеосигнала активного пиксела на шину видео, которая объединяет все активные пикселы мишени в столбцы, при этом столбцы мишени и параллельные им шины видео этих столбцов расположены вдоль радиальных направлений от воображаемого центра кругового кольца к его внешней периферии, причем управление АЦП для пикселов, расположенных вдоль каждой «кольцевой» строки, осуществляется при помощи отдельно взятой «кольцевой» шины, общее количество которых определяет число строк в сенсоре, а количество радиальных шин видео - число элементов (пикселов) в каждой строке сенсора, причем светочувствительная площадь пикселов каждого активного столбца мишени различна от строки к строке, увеличиваясь по мере движения к внешней периферии сенсора, при этом на общем кристалле фотоприемника размещаются и блоки, выполняющие развертку и формирование выходного напряжения цифрового видеосигнала, а именно: регистр кадровой развертки, осуществляющий выбор строки; коммутаторы видеосигнала для каждого столбца, управляемые с соответствующего выхода мультиплексора строчной развертки, и обеспечивающие передачу видеосигнала на выходе каждой шины видео столбца на шину видео строки, выход которой является выходом «Видео» фотоприемника, при этом в активных пикселах мишени сенсора с периодом кадров осуществляют накопление зарядовых пакетов текущего кадра и одновременно считывание видеоинформации предыдущего кадра последовательно один за другим для каждого пиксела отдельно взятой строки мишени и последовательного строка за строкой для мишени в целом, формируя на выходе фотоприемника в цифровом виде напряжение выходного видеосигнала сенсора, формируют на выходе «видео» телевизионной камеры цифровой телевизионный сигнал, который транслируют на вход «видео» компьютера, при этом в компьютере для реализации возможности контроля изделия целиком (полностью) выполняют электрическое вписывание изображения «кольцевого» кадра в прямоугольный растр компьютерного монитора, а для реализации возможности контроля отдельных участков (фрагментов) этого изделия «кольцевой» кадр считывают из оперативной памяти компьютера при помощи m «прямоугольных» кадров, число которых удовлетворяет соотношению (2), при этом по сравнению с прототипом [2], в телевизионной камере осуществляют светоделение входного оптического изображения контролируемого объекта по двум каналам, в результате которого на первом канале изображение каждого из m фрагментов контролируемого объекта последовательно проецируют на мишень матричного фотоприемника, установленного на электромеханической турели или на блоке наведения, а на втором канале - изображение всего «кольцевого» кадра проецируют на мишень «кольцевого фотоприемника, при этом матричный фотоприемник, как и «кольцевой» сенсор, выполнен по технологии КМОП, с аналогичной организацией по методу «координатная адресация», причем число его «прямоугольных» строк равно числу «кольцевых» строк у «кольцевого» сенсора, но в отличие от него, число пикселов в строке превышает показатель, равный числу пикселов в строке у «кольцевого сенсора, деленному на m, а при одинаковой светочувствительной площади (Δ) всех активных пикселов мишени коэффициент усиления K активного пиксела для каждой текущей «прямоугольной»» строки мишени сохраняется постоянным по величине; электромеханическая турель или блок наведения выполняет круговое пространственное перемещение матричного фотоприемника в одно из положений, общее число которых за круг составляет m; при этом в матричном фотоприемнике осуществляют формирование напряжения цифрового «прямоугольного» видеосигнала, который далее транслируется на сервер для записи в дополнительные m блоков оперативной памяти на кадр, причем системный блок одного из компьютерных пользователей является сервером, а сам пользователь - оператором системы, при этом для компенсации оптических потерь светоделения в телевизионной камере изменение коэффициента усиления Km активного пиксела для каждой текущей «кольцевой» строки «кольцевого» сенсора выполняют с учетом коэффициента β по соотношению:

где β - коэффициент, определяющий отношение освещенности сцены на выходе первого канала светоделения к его освещенности на выходе второго канала светоделения;

Δ1 и Δm - соответственно светочувствительная площадь активного пиксела для первой и текущей строки считывания в «кольцевом» сенсоре, обеспечивая одинаковую величину считывающей апертуры в пределах всего «кольцевого» растра изображения.

Совокупность известных и новых признаков для заявляемого способа не известна из уровня техники, следовательно, предлагаемое техническое решение соответствует критерию новизны.

Важно отметить следующее. Светочувствительная площадь пикселов «кольцевой» мишени заявляемого фотоприемника, как и для прототипа [2], от строки к строке различна. Это вызывается необходимостью для «кольцевого» фотоприемника, имеющего одинаковое число пикселов в каждой строке, выравнивания разрешающей способности в пределах кадра путем обеспечения одинаковой величины технологического (производственного) зазора между светочувствительными элементами.

Но при этом, как в заявляемом решении, так и в прототипе [2], не происходит межстрочного нарушения чувствительности сенсора по следующим обстоятельствам.

Параметр считывающей апертуры для всех пикселов каждой текущей строки «кольцевого» кадра в предлагаемом решении определяется произведением трех величин: коэффициента Km для активного пиксела, его светочувствительной площади Δm и коэффициента β.

Как следует из соотношения (3), этот показатель остается постоянным (неизменным) для всех светочувствительных пикселов «кольцевого» фотоприемника. Не меняется и величина шумовой «дорожки» для каждого активного пиксела этого сенсора, что является обязательным условием для реализации чувствительности фотоприемника и его отношения сигнал/шум.

Поэтому предлагаемое техническое решение соответствует критерию о наличии изобретательского уровня.

На фиг. 1 изображена возможная структурная схема сетевого устройства, включая структурную схему телевизионной камеры для реализации заявляемого способа формирования видеосигнала; на фиг. 2 показана эта же структурная схема сетевого устройства, но с другой структурной схемой телевизионной камеры; на фиг. 3 приведена схемотехническая организация «кольцевого» фотоприемника, реализующая заявляемый способ; на фиг. 4 - подробности этой организации применительно к отдельно взятому «радиальному» столбцу; на фиг. 5 - оптическая схема светоделителя; на фиг. 6 - иллюстрация замысла решения по конструкции электромеханической турели (а) и замысла по конструкции блока наведения (б) соответственно; на фиг. 7 - иллюстрация выполнения задачи по конвертированию одного «кольцевого» кадра в шесть «прямоугольных» кадров, а также реализации альтернативой задачи получения шести «прямоугольных» кадров с повышенной разрешающей способностью изображения; на фиг. 8 - возможная электрическая схема блока наведения телевизионной камеры в составе ее структурной схемы, изображенной на фиг. 2.

Устройство на фиг. 1 содержит последовательно соединенные телевизионную камеру 1 и сервер 2 (с установленной в нем платой видео), который является узлом локальной вычислительной сети, с возможностью подключения к ней двух или более персональных компьютеров в позиции 3.

В качестве сервера 2 использован системный блок компьютера 4 оператора системы.

Как и в прототипе [1], плата видео выполняет программным путем следующие операции:

запись «кольцевого» видеосигнала в оперативную память сервера в автоматическом режиме;

электрическое вписывание изображения «кольцевого» кадра из оперативной памяти в «прямоугольный» растр компьютерного монитора в режиме 1 работы системы (наблюдение панорамного сюжета полностью);

считывание «кольцевого» кадра из оперативной памяти при помощи m «прямоугольных» кадров, число которых удовлетворяет соотношению (2) в режиме 2 этой программы.

Но в заявляемом решении в режиме 2 работы системы дополнительно предусмотрена возможность мониторинга фрагментов «кольцевого» кадра с повышенной разрешающей способностью при помощи матричного фотоприемника.

Устройство системы на фиг. 1 содержит телевизионную камеру 1, сервер 2, персональный компьютер 3 пользователей видеоинформации и компьютер 4 оператора системы.

Телевизионная камера 1 на фиг. 1 состоит из последовательно расположенных и оптически связанных объектива 1-1, светоделителя 1-3, «кольцевого» фотоприемника 1-2 и матричного фотоприемника 1-4, установленного на электромеханической турели 1-5. Выход цифрового видеосигнала от сенсора 1-2 является первым выходом телевизионной камеры, а выход цифрового видеосигнала от сенсора 1-4 - вторым выходом телевизионной камеры.

Светоделитель 1-3 телевизионной камеры предназначен для направления светового потока с выхода панорамного объектива 1-1 по двум каналам: на мишень матричного фотоприемника 1-4 (выход 1) и на мишень «кольцевого» фотоприемника (выход 2).

В качестве возможного технического решения оптической схемы светоделителя 1-3 может быть использована схема, представленная на фиг. 5, которая была ранее экспериментально проверена и использована в описании к патенту РФ [3].

Светоделитель 1-3 содержит последовательно расположенные и оптически связанные полупрозрачное зеркало 1-3-1, коллективную линзу 1-3-2, отражающее зеркало 1-3-3 и дополнительный (второй) объектив 1-3-4, причем вход светоделителя оптически связан с входом полупрозрачного зеркала 1-3-1, первый выход светоделителя - с выходом полупрозрачного зеркала 1-3-1, а второй выход светоделителя - с выходом дополнительного объектива 1-3-4.

Обозначим основные параметры для оптических элементов светоделителя:

D/ƒ - относительное отверстие второго объектива;

τ1 - коэффициент пропускания второго объектива;

τ2 - коэффициент пропускания коллективной линзы.

Тогда коэффициент β, определяющий отношение освещенности сцены на первом выходе светоделителя к его освещенности на втором выходе, измеряется величиной

Продолжим анализ устройства, представленного на фиг. 1.

Установка 1-5, обозначенная как «электромеханическая турель», осуществляет круговое пространственное перемещение мишени матричного фотоприемника 1-4 в одно из m положений на проекции «кольцевого» изображения панорамной сцены, формируемого на первом выходе светоделителя 1-3 (см. фиг. 6а).

Отметим, что термин «турель» в настоящей заявке является заимствованным, как наиболее подходящий по названию к блоку 1-5, хотя он (по известным в литературе источникам, см, например, толковый словарь Ушакова) определяет собой «вращающуюся установку для орудий и пулеметов на самолетах и танках».

На материнской плате компьютера 2 оператора установлена плата видео, выполняющая программным путем запись «кольцевого» видеосигнала в оперативную память сервера в автоматическом режиме; электрическое вписывание изображения «кольцевого» кадра из оперативной памяти в прямоугольный растр компьютерного монитора в режиме 1 работы программы; считывание «кольцевого» кадра из оперативной памяти при помощи m «прямоугольных» кадров, число которых удовлетворяет соотношению (2) в режиме 2 этой программы.

«Кольцевой» фотоприемник 1-2 (см. фиг. 3) выполнен по технологии КМОП и содержит на общем кристалле «кольцевую» мишень 1-2-1 сенсора, «кольцевой» регистр 1-2-2 кадровой развертки, «кольцевой» коммутатор 1-2-3 видеосигналов и «кольцевой» мультиплексор 1-2-4.

Как показано на фиг. 3, активные пикселы на мишени сенсора объединены в столбцы, которые расположены вдоль радиальных направлений от воображаемого центра кругового кольца.

Каждый активный пиксел мишени (см. фиг. 4) имеет в своем составе светочувствительную область (площадь) 1-2-1-1, усилитель 1-2-1-2 с коэффициентом усиления K для каждой текущей «кольцевой» строки сенсора и АЦП 1-2-1-3. «Кольцевой» коммутатор 1-2-3 видеосигналов состоит из отдельных коммутаторов 1-2-3-1 видеосигнала, число которых соответствует числу активных пикселов в строке, объединенных «кольцевой» шиной видео 1-2-3-2.

Отметим, что показанная на фиг. 3 форма светочувствительной площади пиксела в виде прямоугольника, а на фиг. 4 - латинской буквы L - являются условными. На практике электроды зарядового накопления активных пикселов мишени сенсора, совпадающие с площадью их светочувствительной площади, могут быть выполнены совершенно иначе, например, с геометрической формой в виде части кругового кольца.

Управление АЦП 1-2-1-3 пиксела для каждой «кольцевой» строки фотоприемника осуществляется при помощи отдельной (своей) строчной шины 1-2-1-4, передающей сигнал управления с соответствующего выхода «кольцевого» регистра 1-2-2 кадровой развертки.

Видеосигнал с выхода каждого АЦП 1-2-1-3 для каждого активного пиксела отдельного взятого «радиального» столбца передается на «радиальную» шину видео 1-2-1-5. Далее при помощи «своего» ключевого МОП-транзистора коммутатора 1-2-3-1, управляемого с одного из выходов мультиплексора 1-2-4, цифровой видеосигнал текущего пиксела передается на «кольцевую» шину видео 1-2-3-2, а затем транслируется по ней на выход сенсора.

То же самое формирование цифрового видеосигнала происходит и в пределах других радиально расположенных столбцов «кольцевой» мишени 1-2-1 предлагаемого сенсора.

Отметим, что на фиг. 3 пунктирные стрелки показывают управление «кольцевыми» строчными шинами 1-2-1-4 фотоприемника со стороны «кольцевого» регистра 1-2-2 кадровой развертки. То, что здесь, как и на фиг. 3, изображены лишь четыре строчные шины является условностью чертежа. Как упоминалось ранее, число шин 1-2-1-4 соответствует показателю действительного числа «кольцевых» строк в заявляемом сенсоре.

Поясним дополнительно на фиг. 3 и другое. Стрелки с непрерывными линиями отмечают передачу сигнала изображения в сенсоре по «радиальным» шинам видео 1-2-1-5 в направлении к «кольцевому» коммутатору 1-2-3 видеосигналов.

В результате в «кольцевом» растре последовательно один за другим для каждого пиксела отдельно взятой «кольцевой» строки и последовательно строка за строкой для мишени в целом формируется в цифровом виде напряжение выходного видеосигнала фотоприемника.

Матричный фотоприемник 1-4, выполненный также по технологии КМОП, сохраняет все признаки прибора, реализованного по методу «координатная адресация» американскими специалистами в «нулевые» двухтысячные годы. Об этом сообщалось и подробно комментировалось в отечественной монографии [4, с. 67, рис. 1.21]. Очевидно, что по этой технологии на кристалле матричного фотоприемника 1-4 также реализуется задача по формированию цифрового видеосигнала «прямоугольного» растра с пониженным энергопотреблением.

В предлагаемом другом решении телевизионной камеры (см. фиг. 2) она содержит в своем составе объектив 1-1, «кольцевой» фотоприемник 1-2, светоделитель 1-3, матричный фотоприемник 1-4, блок наведения 1-5-1, коммутатор-смеситель 1-6, генератор 1-7 электронной отметки и селектор синхроимпульсов 1-8. Выход коммутатора-смесителя 1-6 является единственным выходом «Видео» телевизионной камеры.

По линии связи одна команда управления телевизионной камерой с компьютера 4 оператора системы поступает на управляющий вход коммутатора-смесителя 1-6, затем другая команда - на блок наведения 1-5-1. Первый информационный вход блока 1-6 подключен к выходу «Видео» «кольцевого» фотоприемника 1-2, его второй информационный вход - к выходу «Видео» матричного фотоприемника 1-4, а его третий информационный вход - к выходу генератора электронной отметки 1-7. На управляющий вход генератора 1-7 электронной отметки подается сигнал с датчика положения блока наведения 1-5-1. Выход «Видео» «кольцевого» фотоприемника 1-2 подключен также к входу селектора 1-8 синхроимпульсов, выход кадровых синхроимпульсов (КСИ) которого подключен к первому входу генератора 1-7 и соответственно к входу синхронизации коммутатора-смесителя 1-6, выход строчных синхроимпульсов (ССИ) - ко второму входу генератора 1-7, а выход сигнала синхронизации приемника (ССП) - к входу внешней синхронизации матричного фотоприемника 1-4.

Блок наведения 1-5-1 осуществляет плавное круговое пространственное перемещение мишени матричного фотоприемника 1-4 по проекции «кольцевого» изображения панорамной сцены, формируемого на первом выходе светоделителя 1-3 (см. фиг. 6б).

Электрическая схема блока 1-5-1 может быть реализована на базе технического решения, которое ранее было использовано в описании к патенту РФ [3].

Рассмотрим работу блока 1-5-1 (см. фиг. 8), электрическая схема которого выполнена на двух оптронах HSSR, обозначенных как VT1 и VT2.

Изделие HSSR-7111 согласно [5] - однополюсный нормально разомкнутый оптрон с выходным каскадом на мощных МОП-транзисторах, имеет очень малое сопротивление во включенном состоянии и работает в точности как полупроводниковое реле. Максимальная величина сопротивления нагрузочной цепи оптрона HSSR-7111 во включенном состоянии составляет 1 Ом, а максимальный ток нагрузки в зависимости от схемы включения составляет 0,8 Ампер или вдвое больше (1,6 Ампер). Будем считать, что управление наведением осуществляется командами в соответствии с табл. 1.

Отметим, что подаваемые в телевизионную камеру с компьютера по двухпроводной линии связи сигналы управления блоком 1-5-1 наведения являются постоянными напряжениями положительной или отрицательной полярности величиной (5…12) Вольт, отсчитываемой относительно провода «общий».

При отсутствии команд управления эти напряжений тоже отсутствуют. Поэтому оптроны VT1 и. VT2 разомкнуты, а электродвигатель М обесточен.

Пусть по линии связи на блок 1-5-1 наведения поступает команда «Управление поворотом» - «Вперед». Тогда оптрон VT2 замыкается, а электродвигатель М подключается к источнику переменного напряжения ~U и начинает вращаться.

Если взамен этой команды поступит команда «Управление поворотом» - «Назад», то замкнется оптрон VT1, а электродвигатель М будет вращаться в другом направлении.

Концевые выключатели SF1 и SF2 обеспечивают границы позиционирования в пределах одного кругового оборота матричного фотоприемника 1-4.

Датчик положения выполнен на базе переменного резистора RPn, имеющего линейную зависимость изменения сопротивления от угла поворота, а постоянный резистор Rn* служит для реализации настроечной работы по точному позиционированию. Движок резистора RPn кинематически (через редуктор) связан с двигателем М.

Отметим, что сигнал датчика положения (напряжение Un с потенциометра RPn), поступает на управляющий вход генератора 1-7 электронной отметки, обеспечивая перемещение маркера на «кольцевом» изображении в соответствии с командами, поступающими с блока наведения 1-5-1.

Заявляемый способ формирования видеосигнала осуществляется следующим образом.

При включении компьютерной системы, представленной на фиг. 1, она по умолчанию начинает действовать в режиме 1. В этом режиме работает только «кольцевой фотоприемник 1-2 телевизионной камеры 1. Тогда по ее первому выходу «Видео» цифровой телевизионный сигнал (ЦТС) «кольцевого» кадра по интерфейсу (например, USB 2,0) передается на сервер 2, где выполняется запись видеоинформации в блок оперативной памяти на кадр.

Оператору компьютера 4 первому предоставляется возможность наблюдения на экране монитора контролируемого изделия как полностью, так и фрагментарно, используя шесть различных изображений (см. фиг. 7).

Если четкости этих фрагментарных изображений будет недостаточно, то оператор обязан воспользоваться дополнительным режимом 2 работы системы. В этом режиме дополнительно включается в работу матричный фотоприемник 1-4, который в составе электромеханической турели 1-5 осуществляет за ее круговой оборот шесть остановок для экспонирования.

Как отмечалось выше, число светочувствительных пикселов в строке матричного фотоприемника 1-4 должно быть выше показателя, равного числу пикселов для «кольцевой» строки сенсора 1-2, деленному на m.

Это означает формирование на втором выходе «Видео» телевизионной камеры последовательности из шести дополнительных цифровых кадров с обязательным выигрышем по разрешающей способности (четкости) передаваемых им изображений.

Если число светочувствительных пикселов в строке матричного фотоприемника равно числу пикселов для «кольцевой» строки сенсора 1-2, получаемый выигрыш в четкости изображений составит m раз.

Учитывая оптические свойства светоделителя 1-3, освещенность изображения объекта контроля на мишени «кольцевого» фотоприемника 1-2 будет в β раз меньше, чем освещенность на мишени матричного сенсора 1-4.

Но в типовом случае, когда площадь (Δ) светочувствительного пиксела матричного фотоприемника 1-4 равна площади Δ1 «кольцевого» фотоприемника 1-2, не возникает ситуации с различной чувствительность этих фотоэлектрических каналов. Это объясняется тем, что в заявляемом решении априори предусмотрено, что коэффициент усиления K для всех активных пикселов «кольцевого сенсора увеличен по сравнению с аналогичным коэффициентом матричного сенсора в β раз.

Поэтому в результате выравнивания в телевизионной камере чувствительностей «кольцевого» и матричного фотоприемников, выигрыш в разрешающей способности фрагментарных изображений будет достигнут без потерь отношения сигнал/шум.

После завершения записи этих изображений в дополнительный блок памяти сервера 2 они также становятся доступными для всех пользователей компьютеров 3.

Рассмотрим теперь работу компьютерной системы, изображенной на фиг. 2.

При включении этой системы она тоже начинает действовать по умолчанию в режиме 1.

Характеристика сигналов управления ее телевизионной камеры с компьютера 4, сопутствующих команде «Выбор режима видео», представлена в табл. 2. Они являются типовыми логическими сигналами в уровнях ТТЛ.

Совершенно аналогично на мишень «кольцевого» фотоприемника 1-2 проецируется «кольцевое» оптическое изображение контролируемого изделия, а на мишень матричного сенсора 1-4, расположенного на блоке наведения 1-5, - фрагмент этого изображения.

Далее по выходу «Видео» телевизионной камеры 1 сформированный ЦТС по интерфейсу USB 2,0 передается на сервер 2, в котором выполняется запись видеоинформации в блок оперативной памяти на кадр.

В этом режиме оператор компьютера 4 наблюдает полное изображение объекта контроля, формируемое «кольцевым» фотоприемником 1-2, и электронную отметку на нем, например «крест», который показывает текущее местоположение геометрического центра мишени матричного фотоприемника 1-4.

Будем считать, что наша электронная отметка («крест») априори располагается точно в середине «кольцевого» изображения по его ширине.

Когда оператор компьютера 4 затем выполнит переключение системы в режим 2, то ему взамен будет предложено телевизионное изображение, которое формируется в данный момент матричным фотоприемником 1-4 при его текущем местоположении.

Для того, чтобы коммутация режимов работы системы происходила без внесения искажений в наблюдаемые изображения, фотоприемники телевизионной камеры (см. фиг. 2) работают в режиме Genlock, который обеспечивается путем подачи на вход внешней синхронизации матричного сенсора 1-4 сигнала синхронизации приемника (ССП) от «кольцевого» сенсора 1-2. Дополнительно к этому в коммутаторе-смесителе 1-6 обеспечивается «привязка» временного процесса переключения команд к интервалу кадрового синхроимпульса (КСИ), вырабатываемого на выходе селектора 1-8 синхроимпульсов.

В этой системе, как и в предыдущей, при тех же начальных условиях достигается тот же выигрыш в m раз по разрешающей способности фрагментарного изображения контролируемого изделия.

Но важно отметить очевидное достоинство данного решения. Оно связано с тем, что блок наведения 1-5-1 по сравнению с электромеханической турелью 1-5 может обеспечить точное позиционирование мишени матричного фотоприемника 1-4 в пределах всей площади панорамного изображения, формируемого «кольцевым» фотоприемником 1-2, т.е. без потерь его отдельных участков (см. фиг. 6б).

В настоящее время все блоки устройства, реализующего заявляемый способ формирования видеосигнала в телевизионно-компьютерной системе для контроля промышленных изделий, имеющих форму кругового кольца, освоены или могут быть освоены отечественной промышленностью.

Поэтому следует считать предлагаемое изобретение соответствующим требованию о промышленной применимости.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Политехнический словарь. Главный редактор И.И. Артоболевский. М.: «Советская энциклопедия», 1977.

2. Патент РФ №2704582. МПК H04N 5/374. Способ формирования видеосигнала в телевизионно-компьютерной системе для контроля промышленных изделий, имеющих форму кругового кольца. / В.М. Смелков //Б.И. - 2019. - №31.

3. Патент РФ №2504100. H04N 5/225. Телевизионная система с селективным масштабированием изображения. / В.М. Смелков // Б.И. - 2014. - №1.

4. Березин В.В., Умбиталиев А.А., Фахми Ш.С., Цыцулин А.К. и Шипилов Н.Н. Твердотельная революция в телевидении: Телевизионные системы на основе приборов с зарядовой связью, систем на кристалле и видеосистем на кристалле. Под ред. А.А. Умбиталиева и А.К. Цыцулина. - М.: «Радио и связь», 2006.

5. www.avagotech.com.

Похожие патенты RU2725973C1

название год авторы номер документа
Способ формирования видеосигнала в телевизионно-компьютерной системе для контроля промышленных изделий, имеющих форму кругового кольца 2021
  • Смелков Вячеслав Михайлович
RU2755494C1
Устройство компьютерной системы панорамного телевизионного наблюдения с селективным масштабированием изображения (варианты) 2022
  • Смелков Вячеслав Михайлович
RU2787358C1
Устройство компьютерной системы панорамного телевизионного наблюдения с повышенной разрешающей способностью 2022
  • Смелков Вячеслав Михайлович
RU2785152C1
Устройство компьютерной системы панорамного телевизионного наблюдения с повышенной разрешающей способностью 2019
  • Смелков Вячеслав Михайлович
RU2723645C1
Устройство компьютерной системы панорамного телевизионного наблюдения 2019
  • Смелков Вячеслав Михайлович
RU2720581C1
Устройство компьютерной системы панорамного телевизионного наблюдения с селективным масштабированием изображения (варианты) 2021
  • Смелков Вячеслав Михайлович
RU2780039C1
Устройство компьютерной системы панорамного телевизионного наблюдения с повышенной разрешающей способностью 2023
  • Смелков Вячеслав Михайлович
RU2813357C1
Устройство компьютерной системы панорамного телевизионного наблюдения с повышенной разрешающей способностью 2021
  • Смелков Вячеслав Михайлович
RU2755809C1
Устройство компьютерной системы панорамного телевизионного наблюдения с селективным масштабированием изображения 2023
  • Смелков Вячеслав Михайлович
RU2813358C1
Устройство компьютерной системы панорамного телевизионного наблюдения с селективным масштабированием изображения 2020
  • Смелков Вячеслав Михайлович
RU2727920C1

Иллюстрации к изобретению RU 2 725 973 C1

Реферат патента 2020 года Способ формирования видеосигнала в телевизионно-компьютерной системе для контроля промышленных изделий, имеющих форму кругового кольца

Изобретение относится к телевизионно-компьютерной технике и ориентировано на использование в телевизионных камерах, выполненных на базе двух однокристальных сенсоров: «кольцевого» и «прямоугольного» (матричного), - изготовленных по технологии комплементарных структур «металл-окисел-полупроводник» (КМОП). Техническим результатом является увеличение разрешающей способности наблюдаемых раздельно фрагментов «кольцевого» кадра. Результат достигается при помощи дополнительного фотоприемника, который является «прямоугольным» (матричным) сенсором, при обеспечении одинаковой чувствительности обоих фотоэлектрических каналов посредством светоделения входного оптического изображения контролируемого объекта по двум каналам, в результате которого на первом канале изображение каждого из m фрагментов контролируемого объекта последовательно проецируют на мишень матричного фотоприемника, установленного на электромеханической турели или на блоке наведения, а на втором канале - изображение всего «кольцевого» кадра проецируют на мишень «кольцевого фотоприемника. При этом электромеханическая турель или блок наведения выполняет круговое пространственное перемещение матричного фотоприемника в одно из положений, а для компенсации оптических потерь светоделения в телевизионной камере выполняют изменение коэффициента усиления Km активного пиксела для каждой текущей «кольцевой» строки «кольцевого» сенсора. Такое выполнение камеры обеспечивает формирование цифрового видеосигнала «кольцевого» кадра полностью и отдельно его выбранного фрагмента с повышенной четкостью, что обеспечивает выполнение телевизионно-компьютерного наблюдения объектов, имеющих форму кругового кольца. К подобным объектам (изделиям) промышленного производства могут быть отнесены диски, колеса, фрезы, а также другие детали и принадлежности многочисленных рабочих и транспортных машин. 1 з.п. ф-лы, 8 ил., 2 табл.

Формула изобретения RU 2 725 973 C1

1. Способ формирования видеосигнала в телевизионно-компьютерной системе для контроля промышленных изделий, имеющих форму кругового кольца, заключающийся в том, что в телевизионной камере оптическое изображение контролируемого объекта проецируют на мишень фотоприемника, изготовленного по технологии КМОП, причем мишень сенсора, имеет форму кругового кольца и состоит из фотодиодных активных пикселов, каждый из которых имеет усилитель с переменным коэффициентом усиления K для каждой текущей «кольцевой» строки, и встроенный АЦП, обеспечивающий передачу видеосигнала активного пиксела на шину видео, которая объединяет все активные пикселы мишени в столбцы, при этом столбцы мишени и параллельные им шины видео этих столбцов расположены вдоль радиальных направлений от воображаемого центра кругового кольца к его внешней периферии, причем управление АЦП для пикселов, расположенных вдоль каждой «кольцевой» строки, осуществляется при помощи отдельно взятой «кольцевой» шины, общее количество которых определяет число строк в сенсоре, а количество радиальных шин видео - число элементов (пикселов) в каждой строке сенсора, причем светочувствительная площадь пикселов каждого активного столбца мишени различна от строки к строке, увеличиваясь по мере движения к внешней периферии сенсора, при этом на общем кристалле фотоприемника размещаются и блоки, выполняющие развертку и формирование выходного напряжения цифрового видеосигнала, а именно: регистр кадровой развертки, осуществляющий выбор строки; коммутаторы видеосигнала для каждого столбца, управляемые с соответствующего выхода мультиплексора строчной развертки и обеспечивающие передачу видеосигнала на выходе каждой шины видео столбца на шину видео строки, выход которой является выходом «Видео» фотоприемника, при этом в активных пикселах мишени сенсора с периодом кадров осуществляют накопление зарядовых пакетов текущего кадра и одновременно считывание видеоинформации предыдущего кадра последовательно один за другим для каждого пиксела отдельно взятой строки мишени и последовательно строка за строкой для мишени в целом, формируя на выходе фотоприемника в цифровом виде напряжение выходного видеосигнала сенсора, формируют на выходе «видео» телевизионной камеры цифровой телевизионный сигнал, который транслируют на вход «видео» компьютера, при этом в компьютере для реализации возможности контроля изделия целиком (полностью) выполняют электрическое вписывание изображения «кольцевого» кадра в прямоугольный растр компьютерного монитора, а для реализации возможности контроля отдельных участков (фрагментов) этого изделия «кольцевой» кадр считывают из оперативной памяти компьютера при помощи m «прямоугольных» кадров, число которых удовлетворяет соотношению

где γ - величина захватываемого углового пространства в градусах для участка контролируемого изделия,

отличающийся тем, что в телевизионной камере дополнительно осуществляют светоделение входного оптического изображения контролируемого объекта по двум каналам, в результате которого на первом канале изображение каждого из m фрагментов контролируемого объекта последовательно проецируют на мишень матричного фотоприемника, установленного на электромеханической турели или на блоке наведения, а на втором канале - изображение всего «кольцевого» кадра проецируют на мишень «кольцевого фотоприемника, при этом матричный фотоприемник, как и «кольцевой» сенсор, выполнен по технологии КМОП, с аналогичной организацией по методу «координатная адресация», причем число его «прямоугольных» строк равно числу «кольцевых» строк у «кольцевого» сенсора, но в отличие от него, число пикселов в строке превышает показатель, равный числу пикселов в строке у «кольцевого сенсора, деленному на m, а при одинаковой светочувствительной площади (Δ) всех активных пикселов мишени коэффициент усиления K активного пиксела для каждой текущей «прямоугольной»» строки мишени сохраняется постоянным по величине; электромеханическая турель или блок наведения выполняет круговое пространственное перемещение матричного фотоприемника в одно из положений, общее число которых за круг составляет m; при этом в матричном фотоприемнике осуществляют формирование напряжения цифрового «прямоугольного» видеосигнала, который далее транслируется на сервер для записи в дополнительные m блоков оперативной памяти на кадр, причем системный блок одного из компьютерных пользователей является сервером, а сам пользователь - оператором системы, при этом для компенсации оптических потерь светоделения в телевизионной камере изменение коэффициента усиления Km активного пиксела для каждой текущей «кольцевой» строки «кольцевого» сенсора выполняют по соотношению

где β - коэффициент, определяющий отношение освещенности сцены на выходе первого канала светоделения к его освещенности на выходе второго канала светоделения;

Δ1 и Δm - соответственно светочувствительная площадь активного пиксела для первой и текущей строки считывания в «кольцевом» сенсоре, обеспечивая одинаковую величину считывающей апертуры в пределах всего «кольцевого» растра изображения.

2. Способ формирования видеосигнала в телевизионно-компьютерной системе для контроля промышленных изделий, имеющих форму кругового кольца по п. 1, отличающийся тем, что в «кольцевом» фотоприемнике телевизионной камеры электроды зарядового накопления активных пикселов мишени сенсора, совпадающие с площадью их светочувствительной площади, выполнены с геометрической формой в виде части кругового кольца.

Документы, цитированные в отчете о поиске Патент 2020 года RU2725973C1

Способ формирования видеосигнала в телевизионно-компьютерной системе для контроля промышленных изделий, имеющих форму кругового кольца 2019
  • Смелков Вячеслав Михайлович
RU2704582C1
US 2009147120 A1, 2009.06.11
US 2011285866 A1, 2011.11.24
US 2013162761 A1, 2013.06.27
US 2013021447 A1, 2013.01.24
Скважинная штанговая насосная установка для добычи нефти 1986
  • Султанов Байрак Закиевич
  • Ишмурзин Абубакир Ахмадуллович
  • Ишмурзина Назира Мухамеджановна
  • Гумеров Рустам Расулович
SU1341383A1
US 2006215049 A1, 2006.09.28
Устройство для контроля усилия расчленения элементов электрических соединений 1980
  • Бороховский Евгений Михайлович
  • Петренко Александр Васильевич
SU932302A2
WO 2008108907 A1, 2008.09.12
US 2009135245 A1, 2009.05.28
US 6455831 B1, 2002.09.24.

RU 2 725 973 C1

Авторы

Смелков Вячеслав Михайлович

Даты

2020-07-08Публикация

2019-12-31Подача