СПОСОБ ФАКЕЛЬНОГО СЖИГАНИЯ ТОПЛИВОВОЗДУШНОЙ СМЕСИ И УСТРОЙСТВО ДЛЯ РЕАЛИЗАЦИИ СПОСОБА Российский патент 2020 года по МПК F23D1/00 F23Q13/00 

Описание патента на изобретение RU2726023C1

Изобретение относится к энергетике и может быть использовано на тепловых электростанциях, в котельных и т.п. для обеспечения безмазутного розжига и стабилизации горения пылеугольного и водноугольного топлива.

Известен способ сжигания низкосортных углей и плазменная горелка для его осуществления (патент RU №2059926, С1, МКИ F23D 1/00, F23Q 13/00, 1992), заключающийся в генерировании электрической плазменной дуги в плазмотроне-запальнике со стержневыми электродами, нагреве аэросмеси в дуговой плазме, розжиге и стабилизации горения аэросмеси. Генерирование электрической плазменной дуги осуществляют в канале подачи аэросмеси, выполненном в горелке. Для чего в указанном канале первоначально генерируют электрическую плазменную дугу и ее плазменными потоками возбуждают основную дугу, при этом плазмотрон-запальник перемещают вдоль стержневых элементов по мере их эрозионного разрушения.

Недостатком указанного способа является высокая энергоемкость плазматрона запальника а также малый объемный контакт дугового разряда плазматрона и пылеугольной смеси. При этом химическая активация пылеугольных частиц происходит только за счет термического воздействия дуговой плазмы с температурой до 6000 градусов на примыкающие к плазменной струе потоки топливной смеси. Локальное высокотемпературное воздействие на топливную смесь приводит к взрывообразноллу испарения минеральных компонентов топлива в этой локальной области с дальнейшей их конденсацией на поверхностях горелочного устройства, что ведет к ошлаковыванию этих поверхностей и снижению эффективности работы горелки.

Известен способ сжигания пылеугольного топлива, принятый в качестве прототипа (патент RU №2498159 C1, F23Q 5/00, 2012) заключающийся в том, что создают электродуговой разряд, подают пылеугольное топливо и воздух в зону воспламенения, осуществляют воспламенение пылеугольного топлива, создают диффузный электрический разряд воздействуя этим разрядом на приграничную зону пламяобразования и осуществляют факельное сжигание пылеугольного топлива с низкими энергозатратами.

Известно устройство плазменного воспламенения пылеугольная горелка, принятое в качестве прототипа, содержит корпус, стержневые электроды для генерирования электрической дуги, топливопровод и трубопровод вторичного воздуха, (патент RU №2410603, С1, МКИ F23Q 5/00, F23Q 13/00, 2009). Корпус разделен поперечной перегородкой на резонансную и охлаждающую камеры, причем в центре перегородки выполнен проход вторичного воздуха и в нем установлены с возможностью продольного перемещения стержневые электроды, причем их рабочая часть направлена внутрь резонансной камеры, а электрическую дугу создают переменным током высокой частоты в резонансной камере с образованием акустического поля.

Недостатками указанного способа и устройства, принятых в качестве прототипов является локализация области активации топливовоздушной смеси в межэлектродной зоне, а также недостаточный уровень активации формирующимся электрическим разрядом топливовоздушной смеси для воспламенения этой смеси с повышенной влажностью и низким уровнем летучих компонентов в составе угольных частиц.

Задачей решаемая предлагаемым изобретением является осуществление процесса воспламенения топливовоздушной смеси, позволяющего с минимальными удельными затратами воспламенить топливовоздушную смесь, имеющую разный химический состав и повышенную влажность.

Достижение обеспечиваемого изобретением технического результата становится возможным благодаря использованию процесса плазменного электроионизационного воспламенения топл и воздушной смеси с формированием электрического разряда емкостной типа между электродами и использованием магнитной активации этого электрического разряда с увеличением живого сечения этого разряда за счет наложения магнитного поля в зоне излучения электрического разряда с формированием силовых линий магнитного поля перпендикулярно движению топливовоздушной смеси.

Для реализации описанного способа по изобретению предложено устройство плазменного электроионизационного воспламенения пылеугольного топлива, содержащее корпус, к которому подведены топливопровод и воздухопровод, внутри корпуса установлены стержневые электроды, направленные вдоль его продольной оси и предназначенные для генерирования электрического разряда. Согласно изобретению, корпус выполнен из немагнитного материала, за стержневыми электродами в направлении потока пылеугольного топлива на наружной стороне корпуса по обе стороны от его оси установлены электромагнитные катушки с магнитопроводами с обеспечением возможности их перемещения вдоль оси корпуса. Продольные оси этих электромагнитных катушек перпендикулярны продольной оси корпуса и сосны друг другу. Электромагнитные катушки с магнитопроводами установлены напротив зоны излучения электрического разряда внутри корпуса, причем стержневые электроды и электромагнитные катушки расположены в одной плоскости.

Из уровня техники не выявлено решений, имеющих признаки, совпадающие с отличительными признаками изобретения. Поэтому можно утверждать, что предложенные технические решения соответствует условию изобретательского уровня.

Существо изобретения поясняется прилагаемыми чертежами

На фиг. 1 представлено продольное сечение устройства плазменного электроионизационного воспламенения топливовоздушной смести без включенного магнитного поля; на фиг. 2 - продольное сечение устройства плазменного электрионизационного воспламенения топливовоздушной смести с активированным магнитным полем.

Предлагаемое плазменное электроионизационное устройство воспламенения топливовоздушной смести содержит немагнитный цилиндрический корпус 1, к которому присоединен топливопровод 2 с пылеугольным топливом и воздухопровод 3 обеспечивающий приток вторичного воздуха. Внутри корпуса 1 установлены стержневые электроды 4, между которыми образуется межэлектродное пространство 5. Стержневые электроды 4 электрически соединены с источником питания 6 и направлены вдоль продольной оси корпуса 1 и вдоль направления потока топливовоздушной смеси. Между стержневыми электродами 4 при включении источника питания 6 возникает электрический разряд 7 переменного тока емкостного типа, который под напором набегающего потока топливовоздушной смести смещается к торцам электродов 4 вытягиваясь в направлении потока. На выходе из пространства занимаемого разрядом 7 формируется реакционная зона 8 где обеспечивается воспламенение основного факела 9. За стержневыми электродами 4 в направлении потока топлива на наружной стороне корпуса 1 по обе стороны его продольной оси установлены электромагнитные катушки 10 с магнитпроводами 11, обеспеченные возможностью перемещения вдоль корпуса 1. Продольные оси электромагнитных катушек 10 с магнитопроводами 11 перпендикулярны продольной оси корпуса 1 и сосны друг другу. Стержневые электроды 4 и электромагнитные катушки 10 с магнитопроводами 11 расположены в одной плоскости.

Электромагнитные катушки 10 с магнитопроводами 11 установлены напротив зоны излучения электрического разряда 7.

Электромагнитные катушки 10 электрически соединены с источником питания 12. При включении источника питания 12 формируется магнитное поле с силовыми линиями 13.

На фиг. 1 изображен факел 9 при отключенном источнике питании 12 электромагнитных катушек 10. На фиг. 2 изображен факел 14 при включенном источнике питании 12 электромагнитных катушек 10 и сформированном магнитное поле, силовые линии 13 которого проходят вдоль замыкающей линии магнитопроводов 11, перпендикулярно оси корпуса 1.

Предлагаемый способ и устройство плазменного электроионизационного воспламенения топливовоздушной смеси реализуется следующим образом.

В корпус 1 по топливопроводу 2 и воздухопроводу 3 подают компоненты топливовоздушной смеси, и после смешения топливовоздушная смесь проходит вдоль стержневых электродов 4. После включения источника питания 6, в межэлектродном пространстве 5 между стержневыми электродами 4 возникает электрическое поле при параметрах электрического напряжения и частоты достаточных для формирования электрического разряда 7 емкостного типа с формированием низкотемпературной плазмы. Формирование электрического разряда 7 обеспечивается поведением свободных электронов, скорости которых при заданных напряжении и частоте электрического поля оказывается достаточными для электрической ионизации атомов и молекул газа, а также для активации поверхности топливных частиц. Под действием набегающего потока топливовоздушной смеси электрический разряд 7 смещается к рабочим торцам электродов вытягиваясь вдоль потока. Топливные частицы и газовые молекулы, попадающие в зону разряда 7 подвергаются электрической ионизации с формированием активных химических радикалов и первичных ионов, обеспечивающих условия воспламенения топлива при пониженных температурах в реакционной зоне 8. В результате такой обработки в реакционной зоне 8 воспламеняется активированная топливовоздушная смесь и поджигается основной факел 9 (см. фиг. 1).

При сжигании топливовоздушной смеси с низким содержанием летучих компонентов в составе угольных частиц или с повышенной влажностью смеси, активация топливной смеси в реакционной зоне 8 может оказаться недостаточной для воспламенения основного факела. Для устранения этого недостатка на электромагнитные катушки 10 с ферромагнитными сердечниками 11 подается напряжение от источника питания 12, достаточное для формирования напряженности магнитного поля с силовыми линиями 13, обеспечивающего изменение траектории движения свободных электронов электрического разряда 7 (см. фиг. 2). При этом под действием магнитного поля происходит разворот свободных электронов электрического разряда 7 (см. фиг. 2) вдоль силовых линий магнитного поля 13 и по спирали вокруг них с дополнительным ускорением на участках траектории между соударениями. В результате такого разворота количество свободных электронов электрического разряда 7 (см. фиг. 2) в реакционной зоне 8 резко увеличивается за счет действия магнитного поля, препятствующего уходу свободных электронов как из зоны разряда 7, так реакционной зоны 8. Таким образом, свободные электроны на выходе из зоны разряда 7, движутся вдоль и вокруг силовых линий магнитного поля 13, то есть поперек потока движения топливной смеси. Это обеспечивает резкую интенсификацию процесса ионизации компонентов топливоздушной смеси в разряде 7 на пересечении потока активированной части пылевоздушной смеси и силовых линий магнитного поля 13. Объем реакционной зоны при этом увеличивается. Ток разряда при этом также увеличивается за счет увеличенного количество актов электрической ионизации, обеспеченных повышением концентрацией свободных электронов. В результате в объеме реакционной зоны 8 возрастает концентрация химически активных радикалов топливных частиц и первичных ионов обеспечивающих процесс воспламенения и реакций горения по увеличенному поперечному сечению потока топливовоздушной смеси. Таким образом, благодаря магнитному полю 13 обеспечиваются условия формирования основного факел горения топлива 14 (фиг. 2), более интенсивного, чем факел 9 (фиг. 1), формирующийся без воздействия магнитного поля. Тем самым обеспечиваются условия лучшего воспламенения топливовоздушной смеси с повышенной влажностью или/и пониженным содержанием летучих компонентов.

Расположение электромагнитных катушек 10 с магнитопроводами 11 напротив зоны разряда 7 и реакционной зоной 8 является оптимальным для работы устройства. В этом случае силовые линии магнитное поле 13 оказываются в зоне максимальной концентрации свободных электронов инициированных электрическим разрядом 7, что позволит воспламенять топливовоздушную смесь с минимальными удельными затратами энергии.

Возможность перемещения электромагнитных катушек 10 с магнитопроводом 11 вдоль продольной оси корпуса 1 позволяет выбрать их положение, обеспечивающее оптимальный режим активации воспламенения топливовоздушной смеси с минимизацией энергопотребления источниками питания электромагнитных катушек 12.

Расположение продольных осей электромагнитных катушек 10 с магнитопроводами 11 соосными друг другу и перпендикулярными продольной оси корпуса 1 позволяет максимально увеличить положительное воздействие магнитного поля на топливовоздушную смесь и минимизировать удельные затраты энергии на работу устройства, т.к. при таком расположении максимально используется эффект разворота свободных электронов поперек потока движения топливовоздушной смеси.

Расположение стержневых электродов 4 и электромагнитных катушек 10 с магнитопроводами 11 в одной плоскости позволяет максимально воздействовать магнитным полем на топливовоздушную смесь, т.к. при таком расположении силовые линии магнитного поля затрагивают максимально большую зону электрического разряда 7.

Выполнение корпуса 1 из немагнитного материала исключает шунтирование силовых линий магнитного поля 13 на корпус 1 и позволяет оказать максимальное действие магнитного поля на топливовоздушную смесь в зоне разряда 7 и реакционной зоны 8.

Предлагаемое изобретение позволяет воспламенять топливовоздушную смесь с минимальными удельными затратами энергии, с возможностью воспламенения смеси с повышенной влажностью или/и с уменьшенным количеством летучих компонентов в составе угольных частиц.

Похожие патенты RU2726023C1

название год авторы номер документа
Устройство и способ сжигания топливовоздушной смеси 2022
  • Серант Феликс Анатольевич
  • Серант Дмитрий Феликсович
  • Кучанов Сергей Николаевич
  • Кочергин Дмитрий Олегович
  • Щукин Владимир Александрович
  • Мальчугов Артемий Сергеевич
RU2788490C1
СПОСОБ ФАКЕЛЬНОГО СЖИГАНИЯ ТОПЛИВОВОЗДУШНОЙ СМЕСИ И УСТРОЙСТВО ДЛЯ РЕАЛИЗАЦИИ СПОСОБА С ИСПОЛЬЗОВАНИЕМ ЭЛЕКТРОИОНИЗАЦИОННОГО ВОСПЛАМЕНИТЕЛЯ 2020
  • Кучанов Сергей Николаевич
  • Синельников Денис Сергеевич
  • Кочергин Дмитрий Олегович
RU2731081C1
СПОСОБ ФАКЕЛЬНОГО СЖИГАНИЯ ТОПЛИВОВОЗДУШНОЙ СМЕСИ И УСТРОЙСТВО ДЛЯ РЕАЛИЗАЦИИ СПОСОБА 2020
  • Кучанов Сергей Николаевич
  • Синельников Денис Сергеевич
RU2731087C1
СПОСОБ СТУПЕНЧАТОГО СЖИГАНИЯ ПЫЛЕУГОЛЬНОГО ТОПЛИВА И УСТРОЙСТВО ДЛЯ РЕАЛИЗАЦИИ СПОСОБА 2020
  • Кучанов Сергей Николаевич
RU2766193C1
СПОСОБ ПЛАЗМЕННОГО ВОСПЛАМЕНЕНИЯ ТРУДНОВОСПЛАМЕНЯЕМЫХ ТОПЛИВОВОЗДУШНЫХ СМЕСЕЙ И ГОРЕЛОЧНОЕ УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ ПРИ РАСТОПКЕ КОТЛА 2022
  • Кучанов Сергей Николаевич
RU2812313C2
СПОСОБ ФАКЕЛЬНОГО СЖИГАНИЯ ТОПЛИВОВОЗДУШНОЙ УГОЛЬНОЙ СМЕСИ И УСТРОЙСТВО ДЛЯ РЕАЛИЗАЦИИ СПОСОБА 2019
  • Кучанов Сергей Николаевич
  • Синельников Денис Сергеевич
  • Стерлигов Павел Борисович
  • Щукин Владимир Александрович
  • Яшин Алексей Юрьевич
RU2731139C1
Способ воспламенения и факельного сжигания топливовоздушной смеси и устройство для реализации способа 2021
  • Синельников Денис Сергеевич
RU2778593C1
ВЫСОКОВОЛЬТНЫЙ ЗАПАЛЬНИК ПЫЛЕУГОЛЬНОГО ТОПЛИВА 2018
  • Буров Владимир Федорович
  • Серант Феликс Анатольевич
  • Цепенок Алексей Иванович
RU2674114C1
КОАКСИАЛЬНАЯ СТУПЕНЧАТАЯ ГОРЕЛКА ФАКЕЛЬНОГО СЖИГАНИЯ ТОПЛИВОВОЗДУШНОЙ СМЕСИ 2023
  • Серант Дмитрий Феликсович
  • Кучанов Сергей Николаевич
  • Кочергин Дмитрий Олегович
  • Мальчугов Артемий Сергеевич
RU2813936C1
УСТРОЙСТВО ЭЛЕКТРИЧЕСКОГО ВОСПЛАМЕНЕНИЯ ТОПЛИВОВОЗДУШНОЙ СМЕСИ 2021
  • Синельников Денис Сергеевич
RU2779345C1

Иллюстрации к изобретению RU 2 726 023 C1

Реферат патента 2020 года СПОСОБ ФАКЕЛЬНОГО СЖИГАНИЯ ТОПЛИВОВОЗДУШНОЙ СМЕСИ И УСТРОЙСТВО ДЛЯ РЕАЛИЗАЦИИ СПОСОБА

Изобретение относится к энергетике и может быть использовано на тепловых электростанциях, в котельных и т.п. для обеспечения безмазутного розжига и стабилизации горения пылеугольного и водноугольного топлива. Устройство плазменного электроионизационного воспламенения пылеугольного топлива содержит корпус 1, к которому подведены топливопровод 2 и воздухопровод 3, внутри корпуса установлены стержневые электроды 4, направленные вдоль его продольной оси и предназначенные для генерирования электрического разряда 7, формирования реакционной зоны 8, формирующей воспламенение основного факела 14. Корпус выполнен из немагнитного материала, за стержневыми электродами в направлении потока пылеугольного топлива на наружной стороне корпуса по обе стороны от его оси установлены электромагнитные катушки 10 с магнитопроводами 11 с обеспечением возможности их перемещения вдоль оси корпуса. Продольные оси этих электромагнитных катушек перпендикулярны продольной оси корпуса и соосны друг другу. Электромагнитные катушки 10 с магнитопроводами 11 установлены напротив зоны излучения электрического разряда 7 внутри корпуса, причем стержневые электроды 4 и электромагнитные катушки 10 с магнитопроводами 11 расположены в одной плоскости. Технический результат - осуществление процесса воспламенения топливовоздушной смеси, позволяющего с минимальными удельными затратами воспламенить топливовоздушную смесь, имеющую разный химический состав и повышенную влажность. 2 н. и 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 726 023 C1

1. Способ факельного сжигания топливовоздушной смеси, заключающийся в том, что создают электрический разряд в зоне воспламенения, подают топливо и воздух в зону воспламенения, осуществляют плазменное электроионизационное воспламенение топливовоздушной смеси и осуществляют ее факельное сжигание, отличающийся тем, что воздействуют на электрический разряд магнитным полем, силовые линии которого ориентированы перпендикулярно потоку топливовоздушной смеси.

2. Устройство плазменного электроионизационного воспламенения топливовоздушной смеси, содержащее корпус, к которому подведен топливопровод и воздухопровод, внутри корпуса установлены стержневые электроды, направленные вдоль его продольной оси и предназначенные для генерирования электрического разряда, отличающееся тем, что корпус выполнен из немагнитного материала, за стержневыми электродами, в направлении потока топливовоздушной смеси, на наружных противоположных сторонах корпуса установлены, с возможностью перемещения вдоль продольной оси корпуса, электромагнитные катушки с магнитопроводами, продольные оси этих электромагнитных катушек с магнитопроводами соосны друг другу и перпендикулярны продольной оси корпуса, причем электромагнитные катушки с магнитопроводами установлены напротив зоны излучения электрического разряда внутри корпуса.

3. Устройство по п. 2, отличающееся тем, что стержневые электроды в корпусе и электромагнитные катушки с магнитопроводами на наружных противоположных сторонах корпуса расположены в одной плоскости.

Документы, цитированные в отчете о поиске Патент 2020 года RU2726023C1

УСТРОЙСТВО ПЛАЗМЕННОГО ВОСПЛАМЕНЕНИЯ ПЫЛЕУГОЛЬНОГО ТОПЛИВА 2009
  • Наумов Юрий Иванович
RU2410603C1
СПОСОБ СЖИГАНИЯ ПЫЛЕУГОЛЬНОГО ТОПЛИВА 2012
  • Кошкаров Антон Сергеевич
  • Наумов Юрий Иванович
  • Николаев Сергей Фёдорович
  • Шинкарёв Андрей Александрович
RU2498159C1
НОЖНИЦЫ ДЛЯ ПОПЕРЕЧНОЙ РЕЗКИ ТОЛСТЫХ ЛИСТОВ С ЭКСЦЕНТРИКОВЫМ ПРИВОДОМ 2003
  • Хайтце Герхард
  • Баур Томас
RU2338633C2
СОСТАВНОЙ КАТОД И УСТРОЙСТВО ДЛЯ ПЛАЗМЕННОГО ПОДЖИГА, В КОТОРОМ ИСПОЛЬЗУЕТСЯ СОСТАВНОЙ КАТОД 2002
  • Ван Айшэн
  • Тан Хун
  • Цзи Шусинь
  • Ван Юйпэн
  • Тянь Дун
  • Ван Гунлинь
  • Жэнь Вэйу
  • Чэнь Сюэюань
  • Шао Жуйху
  • Чжан Сяоюн
  • Ма Шуан
RU2260155C2
RU 2059926 C1, 10.05.1996
СПОСОБ ПЛАЗМЕННОГО ВОСПЛАМЕНЕНИЯ ПЫЛЕУГОЛЬНОГО ТОПЛИВА 2001
  • Перегудов В.С.
  • Карпенко Е.И.
  • Мессерле В.Е.
  • Пшеничников Ю.М.
RU2210700C2

RU 2 726 023 C1

Авторы

Кучанов Сергей Николаевич

Кучанов Виталий Сергеевич

Серант Феликс Анатольевич

Серант Дмитрий Феликсович

Буров Владимир Федорович

Даты

2020-07-08Публикация

2019-02-22Подача