Изобретение относится к теплоэнергетике и может использоваться для обогрева теплиц, животноводческих, птицеводческих предприятий, промышленных и жилых помещений АПК и других отраслей.
Нагрев жидких теплоносителей широко используется для различных целей, в том числе для теплоснабжения зданий и сооружений во многих странах северного полушария. А нагрев теплоносителя осуществляют с помощью тепла горения различных топливных материалов (дерево и древесные отходы, уголь, нефтепродукты, углеводородные газы) и с помощью электрических нагревательных устройств.
Известен способ нагрева жидкого теплоносителя, реализованный, например, в электрических электродных (ионных) котлах отопления «Галан». Нагрев теплоносителя в них происходит способом ионизации теплоносителя, т.е. разрывом молекул на положительные и отрицательные ионы, которые в виде электрического тока движутся к отрицательному и положительному электродам с частотой тока сети, выделяя при этом на электродах свою энергию. Теплоносителем является этиленгликоль с водой или подготовленная вода. Электрическое сопротивление теплоносителя по мере его нагрева уменьшается, возрастают электрические токи и котел постепенно достигает расчетную электрическую и тепловую мощность. Экономичность котлов «Галан» в преобразовании электроэнергии в тепловую приближается к 100 %. При этом 1 кВт⋅ч затрат электроэнергии котлом теоретически выделяет 860 ккал тепловой энергии или 3,6×103 кДж.
Канаревым Ф.М. созданы водоэлектролитические ячейки с выделением тепловой энергии на 29135,8 % в сравнении с затратами электроэнергии на резонансное электромагнитное расщепление молекул воды. На этом основании создан «Водоэлектромобиль», не потребляющий извне какой либо энергии. (Канрев Ф.М. Начала физхимии микромира. Монография. Восьмое издание, Краснодар, 2007.- 753 с. Раздел 14. Вода - источник тепловой энергии, стр. 568-639. Раздел 15. Вода-источник водорода, стр. 640-683. Стр. 678, таблица 69, значения энергетической эффективности процесса электролиза воды по показаниям осциллографа - 29135,8 % . http://Kanarev.innoplaza.net; http://www.new-physicscom/ http://peswiki.com/index.php/Directory:Kanarev_Electrolysis)
Канарев Ф.М. Теоретические основы физхимии нанотехнологий. Второе издание. Краснодар, КГАУ, 2008, 676 с. Раздел 6.12, стр. 265-273.
Канарев Ф.М. Теоретические основы физхимии микромира. Учебник. 6-е издание. Россия, август 2012; Раздел 8.13. Энергетика молекул кислорода, водорода и воды, стр. 146-150; Раздел 8.14. Кластеры воды и их энергии связи, стр. 150-153, /http://www.micro-world.su/.
Одна из резонансных частот поглощения и испускания электромагнитного излучения и акустических колебаний жидкой воды составляет 25 Гц (таблица 3.17, стр. 218 и таблица 3.18, стр. 221 книги Рассадкина Ю.П. Вода обыкновенная и не обыкновенная. М.: «Галерея СТО», 2008.- 840 с.). А частота переменного тока промышленной электросети и резонансного электромагнитного поля у индукционного нагревателя в ООО «Альтаир-П» составляет 50 Гц. Такое соотношение частот свидетельствует о возможности резонансного воздействия переменного электромагнитного поля от промышленной электросети на расщепление молекул воды. В табл. 8.4 (стр. 587) книги Рассадкина Ю.П. приведены данные о 31 генераторах тепловой энергии, где дополнительная энергия, в сравнении с затратами на прокачку воды через генераторы, создается в процессах кавитации с расщеплением молекул воды. В этих генераторах коэффициент эффективности по 18-и литературным источникам составляет от 0,82 до 25,7.
С 2010 г. известны портативные физические генераторы электроэнергии Тбилисского архитектора Тариэла Капанадзе (Патент WO 2008/103129 A1 от 28.08.2008 г.).
Наиболее близким к заявляемому способу, принятому за прототип, является способ, осуществляемый в установке для нагрева битума по авторскому свидетельству СССР № 1286671, МПК Е 01С 19/08, 1985 г.
Известный способ заключается в электромагнитном воздействии на теплоноситель от катушек индуктивности. В нагреваемые трубы вводят куски твердого битума, подключают катушки индуктивности к промышленной электросети, расплавляют битум, выключают нагревательные элементы, удаляют расплав из труб и циклически повторяют те же операций.
Недостатком этого известного способа является ограниченное применение, узкая функциональная направленность, малая производительность из-за циклической, а не непрерывной работы. Теплотехнические расчеты по затратам электроэнергии и выделяемого тепла для расплавления битума на этой установке не проводились.
Технической задачей настоящего изобретения является увеличение генерации тепла в теплоносителе свыше 100 % от потребляемой энергии.
Технический результат достигается тем, что в способе увеличения генерации тепловой энергии в теплоносителе, заключающемся в электромагнитном воздействии на теплоноситель, согласно изобретению трубы нагревателя на входе и на выходе изолируют от труб потребителя тепла диэлектрическими присоединительными патрубками, к катушкам индуктивности нагревателя подключают электрическую емкость и активное сопротивление, величины которых рассчитывают на требуемую тепловую производительность и корректируют экспериментально, катушки индуктивности с электрической емкостью и активным сопротивлением образуют резонансный электромагнитный LCR-колебательный контур, прокачивают теплоноситель в его электромагнитном резонансном поле, при прохождении которого происходит расщепление молекул воды на ионы водорода и гидроксила с последующим воссоединением их в молекулы воды и выделением в теплоноситель дополнительной тепловой энергии.
Способ реализуют такими действиями.
Стальные трубы нагревателя на входе и на выходе изолируют от труб циркулирующей системы теплоснабжения диэлектрическими присоединительными патрубками. К катушкам индуктивности на трубах нагревателя подключают электрические емкость и активное сопротивление, все величины которых рассчитывают на требуемую тепловую производительность и уточняют экспериментально. Катушки индуктивности вместе с электрическими емкостями и активными сопротивлениями образуют электромагнитный резонансный LCR колебательный контур. Включают его на постоянную работу. Электромагнитным резонансным полем катушек нагревают теплоноситель. Прокачивают теплоноситель через резонансное электромагнитное поле нагревателя. Осуществляют расщепление молекул воды на ионы водорода и гидроксила, вызывают поглощение ими энергии из пространства вне нагревателя. Осуществляют последующее воссоединение ионов в молекулы воды с выделением, поглощенной ионами энергии, в теплоноситель и тем самым увеличивают генерацию тепловой энергии в теплоносителе свыше 100 % от потребляемой энергии.
Технический результат способа заключается в выделении индукционным нагревательным котлом в ООО «Альтаир-П» (г. Зеленоград) тепловой энергии величиной в 169-215 % от расчетных затрат электроэнергии, т.е. при затрате 1 кВт⋅ч электроэнергии в котле выделяется не 860, а 1453 - 1849 ккал тепла.
Эти показатели эффективности индукционного котла в ООО «Альтаир-П» сопоставимы с коэффициентом эффективности известных кавитационных теплогенераторов, выпускаемых в Российской Федерации и в нескольких странах за рубежом с конца прошлого века (Источник: Рассадкин Ю.П. «Вода обыкновенная и не обыкновенная».- М.: «Галерея СТО», 2008.- 840 с., таблица 8.4 на стр. 597).
Генерация дополнительного тепла при электромагнитном, кавитационном механо-химическом и ином физическом способе расщепления молекул воды обусловлена следующим. Для физического расщепления молекулы воды на ионы водорода и гидроксила требуется энергия, равная 248 кДж/моль. После расщепления молекулы воды оставшиеся ее части имеют электроны с не скомпенсированными связями, но в таком состоянии они находиться не могут. Оба электрона в частях расщепленной молекулы воды для своей стабильности поглощают из окружающего пространства фотоны с энергией 248 кДж/моль, а в сумме 496 кДж/моль, становятся устойчивыми, активными и воссоединяют части расщепленной молекулы воды. При воссоединении этих частей их электроны излучают в воду поглощенную ими, но уже не нужную им, электромагнитную энергию, равную 496 кДж/моль. Отсюда, затратив в физическом воздействии на каждую молекулу воды только 248 кДж/моль, излучают в воду 496 кДж/моль и получают дополнительную энергию в 248 кДж/моль. Отсюда повышение калорийности процессов физического расщепления молекул воды обусловлено по проф. Канареву Ф.М. возвратным действием электронов» расщепленных частей молекул воды.
Способ увеличения генерации тепловой энергии в теплоносителе электромагнитным воздействием на него подтверждается теплотехническими расчетами, проведенными 18.07.2007 г. специалистами ООО «Интеллект» подразделения «МИФИ-система» при Московском инженерно-физическом институте: д.т.н. Дресвиной М.А. и к.т.н. Поповым Ю.А.
В первом испытании этих специалистов индукционного котла весом 150 кг с условным обозначением ИННА-3 в ООО «Альтаир-П» нагревали 35 кг воды в течение 180 сек. При этом котел мощностью 44,8 кВт израсходовал 8064 кВт электроэнергии, а вода и металл установки нагрелись с 20°С до 83°С благодаря полученной в нагревателе 13633,2 кДж тепловой энергии. Отсюда в этом испытании по расчетам испытателей тепловой КПД котла составил 169 %.
В другом испытании этих же специалистов этим же котлом ИННА-3 обогрели весь цех предприятия ООО «Альтаир-П». Результаты измерений приведены в таблице 1.
Расчетами получены значения тепла, поглощенного строением цеха Q1, содержимого в нем Q2, а также затраченной на нагрев всего цеха электроэнергии Qэ: Q1 = 158 466 кДж; Q2 = 172 234 кДж; Qэ = 153 780 кДж.
Отсюда КПД нагревателя по расчетам испытателей составил:
(158 466 кДж + 172 234 кДж) : 153 780 кДж = 2,1504
Заключение специалистов ООО «Интеллект» подразделения «МИФИ-система» при МИФИ: теплотехнические расчеты показали, что тепловой КПД индукционного резонансного нагревателя на предприятии ООО «Альтаир-П» (г. Зеленоград) может составлять 1,69…2,15.
Таблица 1.
В 2018 г. реализация способа осуществлена уже в двух производственных цехах предприятия ООО «Альтаир-П» (микрорайон «Андреевка» г. Зеленоград; E-mail: altairps@mail.ru). Здесь в системах отопления благодаря электромагнитному воздействию на нагреваемую воду отопления с 1986 г. по 25.12.2019 г. выделяется повышенное, до 215 %, количество тепловой энергии, подтверждаемое теплотехническими расчетами ООО «Интеллект», а также нет признаков коррозии в трубах.
Изобретение относится к теплоэнергетике и может использоваться для обогрева теплиц, животноводческих, птицеводческих предприятий, промышленных и жилых помещений АПК и других отраслей. Трубы нагревателя на входе и на выходе изолируют от труб потребителя тепла диэлектрическими присоединительными патрубками, к катушкам индуктивности подключают электрическую емкость и активное сопротивление, величины которых рассчитывают на требуемую тепловую производительность и корректируют экспериментально, катушки индуктивности с электрической емкостью и активным сопротивлением образуют резонансный электромагнитный LCR-колебательный контур, прокачивают теплоноситель в его электромагнитном резонансном поле, при прохождении которого происходит расщепление молекул воды на ионы водорода и гидроксила с последующим воссоединением их в молекулы воды и выделением в теплоноситель дополнительной тепловой энергии. 1 табл.
Способ увеличения генерации тепловой энергии в теплоносителе, заключающийся в электромагнитном воздействии на теплоноситель от катушек индуктивности, отличающийся тем, что трубы нагревателя на входе и на выходе изолируют от труб потребителя тепла диэлектрическими присоединительными патрубками, к катушкам индуктивности нагревателя подключают электрическую емкость и активное сопротивление, величины которых рассчитывают на требуемую тепловую производительность и корректируют экспериментально, катушки индуктивности с электрической емкостью и активным сопротивлением образуют резонансный электромагнитный LCR-колебательный контур, прокачивают теплоноситель в его электромагнитном резонансном поле, при прохождении которого происходит расщепление молекул воды на ионы водорода и гидроксила с последующим воссоединением их в молекулы воды и выделением в теплоноситель дополнительной тепловой энергии.
Установка для нагрева и обезвоживания битума | 1985 |
|
SU1286671A1 |
RU 89854 U1, 20.12.2009 | |||
СПОСОБ И УСТАНОВКА ПОДГОТОВКИ И ГЛУБОКОЙ ПЕРЕРАБОТКИ УГЛЕВОДОРОДНОГО СЫРЬЯ | 2009 |
|
RU2387697C1 |
Устройство для индукционного нагрева | 2018 |
|
RU2674999C1 |
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок | 1923 |
|
SU2008A1 |
Авторы
Даты
2020-07-15—Публикация
2020-02-07—Подача