Изобретение относится к области металлургии, ракетному двигателестроению, системам аварийного охлаждения атомных реакторов и, в частности, диверторам, лимитерам и 6 л анкетам термоядерных реакторов типа токамак и может быть использовано для охлаждения стенок камер с высокой интенсивностью теплового потока из центра камер на периферию.
Известна термосиловая охлаждаемая конструкция стенки элемента высокотемпературного воздушно-газового тракта (патент РФ №2403491, МПК F16L 59/07, публ. 10.11.2010), содержащая каналы для прохождения охлаждающей жидкости, имеющие тепловой контакт со стенкой камеры сгорания.
Недостатком настоящего технического решения является ограниченный отвод энергии от горячей стенки, связанный с недопустимостью закипания охлаждающей жидкости в каналах и образованием эффекта «запаривания».
Известен порт-лимитер термоядерного реактора, содержащий охлаждаемую стенку (Патент РФ №2267174, МПК G21B 1/00, публ. 27.12.2005), каналы для прохождения охлаждающей жидкости, имеющие тепловой контакт с поверхностью, воспринимающей тепловой поток от плазмы.
Недостатком данного технического решения является ограниченный отвод энергии от горячей стенки.
Наиболее близкой по технической сущности к заявляемому изобретению является охлаждаемая стенка высокотемпературного реактора, описанная в патенте РФ №2467416, МПК G21C 15/18, публ. 20.11.2012) и содержащая поверхность приема теплового потока и прилегающую к ней теплопроводящую зону, группу форсунок, каждая из которых содержит камеру с осевым отверстием, каналы подвода охлаждающей жидкости. На поверхности приема теплового потока расположены несколько слоев металлических шариков, при этом вода, попавшая на их поверхность, испаряется и по каналам между шариками вырывается наружу, образуя паровую подушку, препятствующую попаданию распыляемой из форсунок воды на охлаждаемую поверхность.
Недостатком настоящего технического решения является низкая степень охлаждения при высокой интенсивности теплового потока.
Технической задачей предлагаемого изобретения является повышение эффективности съема тепла с нагреваемой стенки.
Технический результат заключается в повышении теплоотдачи от корпуса высокотемпературного реактора.
Технический результат достигается тем, что в известной охлаждаемой стенке, содержащей поверхность приема теплового потока, прилегающую к ней теплопроводящую зону и группу форсунок, сформирована регулярная совокупность игольчатых элементов, расположенных на поверхности теплопроводящей зоны, с нанесенным слоем нанотрубок, образующих нанорельеф, при этом группа форсунок расположена напротив теплопроводящей зоны, а форсунки группы выполнены двухкомпонентными газо-водяными.
Сущность изобретения поясняется чертежами, где на фиг. 1 изображена охлаждаемая стенка реактора высокотемпературных процессов, на фиг. 2 показан вид А - увеличенный фрагмент нанорельефа теплопроводящей зоны.
Охлаждаемая стенка реактора высокотемпературных процессов содержит поверхность 1 приема теплового потока, изготовленной, как правило, из вольфрама, и прилегающую к ней теплопроводящую зону 2, группу форсунок 3, регулярную совокупность игольчатых элементов 4, расположенных на поверхности теплопроводящей зоны 2, с нанесенным слоем нанотрубок 5, образующих нанорельеф, при этом группа форсунок 3 расположена напротив теплопроводящей зоны 2, а каждая форсунка группы 3 выполнена двухкомпонентной газо-водяной, при этом к группе форсунок 3 подведены трубопроводы подвода сжатого инертного газа 6 и охлаждающей воды 7.
Охлаждаемая стенка реактора высокотемпературных процессов работает следующим образом.
Тепловой поток, излучаемый, например, высокотемпературной плазмой, воспринимается поверхностью приема теплового потока 1, и за счет теплопроводности материала охлаждаемой стенки, изготовленной из материала с высокой теплопроводностью, нагревает теплопроводящую зону 2 и регулярную совокупность игольчатых элементов 4 с нанесенным слоем нанотрубок 5, создавая вторичный тепловой поток, навстречу которому направлен мелкодисперсный двухкомпонентный газо-водяной поток, создаваемый группой форсунок 3. Подача в группу форсунок 3 сжатого инертного газа позволяет создать мелкодисперсную водяную «пыль». Выполнение поверхности теплопроводящей зоны 2 в виде нанорельефа влияет на мелкодисперсное состояние теплоносителя. Это приводит к тому, что вода в микрокаплях за счет теплового потока с нанорельефа сразу превращается в пар, минуя фазу нагрева.
Образовавшаяся в процессе охлаждения стенки газопаровая смесь собирается в полости и может использоваться в энергетических целях.
Углеродные нанотрубки, образующие нанорельеф, имеют чрезвычайно развитую поверхность: удельная поверхность материала нанотрубок достигает значений около 600 м2/г. Столь высокая удельная поверхность, в несколько сотен раз превышающая удельную поверхность лучших современных радиаторов и обеспечивает высокую эффективность съема тепла с нагреваемой стенки.
Использование изобретения позволяет повысить теплоотдачу от корпуса высокотемпературного реактора за счет формирования охлаждающей среды в виде мелкодисперсного потока, а также формирование охлаждаемой поверхности в виде структуры с развитой поверхностью.
название | год | авторы | номер документа |
---|---|---|---|
Охлаждаемая стенка токамака | 2016 |
|
RU2641651C1 |
ПРИЕМНАЯ ПЛАСТИНА ДИВЕРТОРА СТАЦИОНАРНОГО ТЕМОЯДЕРНОГО РЕАКТОРА | 2020 |
|
RU2738809C1 |
СИСТЕМА ОХЛАЖДЕНИЯ СТЕНКИ ЯДЕРНОГО РЕАКТОРА | 2020 |
|
RU2740042C1 |
Охлаждаемая стенка токамака | 2019 |
|
RU2725161C1 |
ПЕРВАЯ СТЕНКА ТЕРМОЯДЕРНОГО РЕАКТОРА | 1994 |
|
RU2065626C1 |
Способ и устройство для оптимизации рециклинга рабочего газа в токамаке | 2018 |
|
RU2686478C1 |
ПОРТ-ЛИМИТЕР ТЕРМОЯДЕРНОГО РЕАКТОРА | 2002 |
|
RU2212717C1 |
Способ охлаждения корпуса ядерного реактора при тяжелой аварии и устройство для его осуществления | 2018 |
|
RU2695128C1 |
Способ охлаждения корпуса ядерного реактора при тяжелой аварии и устройство для его осуществления | 2018 |
|
RU2695129C1 |
Лимитер | 2018 |
|
RU2687292C1 |
Изобретение относится к охлаждаемой стенке реактора высокотемпературных процессов, к области металлургии, ракетному двигателестроению, системам аварийного охлаждения атомных реакторов и, в частности, диверторам, лимитерам и бланкетам термоядерных реакторов типа токамак. Охлаждаемая стенка реактора высокотемпературных процессов содержит поверхность приема теплового потока и прилегающую к ней теплопроводящую зону, группу форсунок, регулярную совокупность игольчатых элементов, расположенных на поверхности теплопроводящей зоны, с нанесенным слоем нанотрубок, образующих нанорельеф. Указанная группа форсунок расположена напротив теплопроводящей зоны, а каждая форсунка группы выполнена двухкомпонентной газо-водяной. К группе форсунок подведены трубопроводы подвода сжатого инертного газа и охлаждающей воды. Излучаемый тепловой поток воспринимается поверхностью приема теплового потока, нагревает теплопроводящую зону и регулярную совокупность игольчатых элементов с нанесенным слоем нанотрубок, создавая вторичный тепловой поток, навстречу которому направлен мелкодисперсный двухкомпонентный газ для создания мелкодисперсной водяной «пыли». Техническим результатом является повышение теплоотдачи от корпуса высокотемпературного реактора путем того, что вода в микрокаплях за счет теплового потока с нанорельефа сразу превращается в пар, минуя фазу нагрева. 2 ил.
Охлаждаемая стенка реактора высокотемпературных процессов, содержащая поверхность приема теплового потока, прилегающую к ней теплопроводящую зону и группу форсунок, отличающаяся тем, что снабжена регулярной совокупностью игольчатых элементов, расположенных на поверхности теплопроводящей зоны, с нанесенным слоем нанотрубок, образующих нанорельеф, при этом группа форсунок расположена напротив теплопроводящей зоны, а сами форсунки группы выполнены двухкомпонентными газо-водяными.
СИСТЕМА ПАССИВНОЙ БЕЗОПАСНОСТИ ЯДЕРНОЙ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ | 2011 |
|
RU2467416C1 |
ПОРТ-ЛИМИТЕР ТЕРМОЯДЕРНОГО РЕАКТОРА | 2004 |
|
RU2267174C1 |
ТЕРМОСИЛОВАЯ ОХЛАЖДАЕМАЯ КОНСТРУКЦИЯ СТЕНКИ ЭЛЕМЕНТА ВЫСОКОТЕМПЕРАТУРНОГО ВОЗДУШНО-ГАЗОВОГО ТРАКТА | 2008 |
|
RU2403491C2 |
FR 3038445 B1, 18.08.2017 | |||
KR 101789135 B1, 25.10.2017 | |||
KR 101796151 B1, 10.11.2017 | |||
KR 101716441 В1, 14.03.2017. |
Авторы
Даты
2020-07-29—Публикация
2019-12-26—Подача