Предполагаемое изобретение относится к сельскому хозяйству и может быть использовано для калибровки и предпосадочной обработки лука-севка.
Известна установка с тороидальным резонатором для предпосадочной обработки клубней картофеля воздействием электрофизических факторов, где предусмотрено комплексное воздействие таких электрофизических факторов как: электромагнитное поле сверхвысокой частоты (СВЧ-генератор); коронного разряда, ультрафиолетовых лучей, озона (источником может являться ультратон или Дарсонваль) и индукционного нагрева (индукционная плита) [1].
Недостатки. Данную установку можно использовать для калиброванного посадочного материала, в том числе для лука-севка крупной фракции, в противном случае мелкие фракции вместе с эктопаразитами подвергаются индукционному нагреву. В этой установке для эффективного комплексного воздействия электрофизических факторов исключить индукционный нагрев и следует использовать предварительно калиброванный посадочный материал, это позволит выявить точную дозу воздействия электромагнитного поля сверхвысокой частоты для каждой фракции.
Для обеззараживания, активизации клеток посадочного материала с целью повышения их посевных и продуктивных показателей нами предлагается проводить предпосадочную обработку лука-севка в установке с источниками электромагнитного поля сверхвысокой частоты (ЭМПСВЧ) и электрогазоразрядными лампами, запитанными от генератора килогерцевой частоты. Например, источниками килогерцовой частоты могут быть ультратон АМП-2 ИНТ (частота 22 кГц) или Дарсонваль (110 кГц) [2]. Ультратоновоздействие представляет собой воздействие на сырье высокочастотного электрического тока. Этот переменный ток, характеризуется высоким напряжением и малой силой. Важным эффектом ультратоновоздействия на сырье является бактерицидное действие озона. Источниками ЭМПСВЧ являются СВЧ генераторы с маломощными с воздушным охлаждением магнетронами (частота 2450 МГц, длина волны 12,24 см).
Технической задачей изобретения является разработка установки для проведения предпосадочной обработки лука-севка комплексным воздействием электромагнитного поля сверхвысокой частоты и ионизированного воздуха в процессе калибровки на фракции в непрерывном режиме.
Технический результат достигается тем, что установка для калибровки и предпосадочной обработки лука-севка воздействием электрофизических факторов содержит
в цилиндрическом экранирующем корпусе, расположенном под наклоном к горизонтальной плоскости, соосно установленный секционный цилиндрический перфорированный резонатор из неферромагнитного материала без оснований, диаметр которого согласован с длиной волны, вращающийся от электродвигателя за счет зацепления ведущей звездочки с венцом, охватывающим его по периметру,
причем с наружной стороны одного основания цилиндрического экранирующего корпуса закреплены приемная емкость с заслонкой и магнетроны СВЧ-генераторов, излучатели которых направлены внутрь цилиндрического резонатора, собранного из перфорированных секций с отверстиями разного диаметра, причем диаметр отверстий каждой последующей секции увеличивается, начиная со стороны приемной емкости,
а к другому основанию экранирующего корпуса с наружной стороны прикреплены генераторы килогерцовой частоты, от которых запитаны гребешковые электрогазоразрядные лампы, установленные с внутренней стороны основания радиально с регулируемым зазором,
при этом под каждую секцию цилиндрического перфорированного резонатора к боковой поверхности цилиндрического экранирующего корпуса пристыкованы перевернутые усеченные пирамидальные резонаторы из неферромагнитного материала без оснований, содержащие заслонки вместо оснований малого диаметра, а конструкционные размеры пирамидальных резонаторов согласованы с длиной волны,
причем с наружной стороны к боковой поверхности каждого усеченного пирамидального резонатора, ближе к стыку с цилиндрическим экранирующим корпусом, прикреплены магнетроны СВЧ-генераторов с излучателями, направленными внутрь.
Техническое решение поясняется чертежами, где на фиг. 1 приведено схематическое изображение установки для калибровки и предпосадочной обработки лука-севка воздействием электрофизических факторов;
на фиг. 2 приведено пространственное изображение установки для калибровки и предпосадочной обработки лука-севка воздействием электрофизических факторов (в разрезе);
на фиг. 3 приведено пространственное изображение первой секции цилиндрического резонатора с малым диаметром отверстий перфорации;
на фиг. 4 приведено пространственное изображение второй секции цилиндрического резонатора с средним диаметром отверстий перфорации;
на фиг. 5 приведено пространственное изображение последней секции цилиндрического резонатора с максимальным диаметром отверстий перфорации;
на фиг. 6 приведено пространственное изображение перевернутого усеченного пирамидального резонатора пристыкованного с нижней стороны цилиндрического экранирующего корпуса.
Установка содержит (фиг. 1-6):
цилиндрический экранирующий корпус 1 с вырезом по длине боковой поверхности; секционный цилиндрический перфорированный резонатор 2; венец 3 с ведущей звездочкой на валу электродвигателя; приемная емкость 4 с заслонкой; магнетроны 5 СВЧ-генераторов, излучатели которых направлены в секционный цилиндрический перфорированный резонатор 2; секции 6 с разными диаметрами отверстий перфорации цилиндрического резонатора; перевернутые усеченные пирамидальные резонаторы 7 с заслонками 9; магнетроны 8 СВЧ-генераторов, излучатели которых направлены внутрь пирамидальных резонаторов; генераторы 10 килогерцовой частоты; гребешковые электрогазоразрядные лампы 11; опорные ролики 12.
Установка для калибровки и предпосадочной обработки лука-севка воздействием электрофизических факторов содержит в цилиндрическом экранирующем корпусе 1, расположенном под наклоном к горизонтальной плоскости, соосно установленный секционный цилиндрический перфорированный резонатор 2 из неферромагнитного материала без оснований. Диаметр цилиндрического резонатора согласован с длиной волны. Секционный цилиндрический перфорированный резонатор 2 вращается от электродвигателя за счет зацепления ведущей звездочки с венцом 3, охватывающим его по периметру.
С наружной стороны одного основания цилиндрического экранирующего корпуса 1 закреплены приемная емкость 4 с заслонкой и магнетроны 5 СВЧ-генераторов, излучатели которых направлены внутрь цилиндрического резонатора 2, собранного из перфорированных секций 5 с отверстиями разного диаметра. Диаметр отверстий перфорации каждой последующей секции 5 увеличивается, начиная со стороны приемной емкости 4.
К другому основанию экранирующего корпуса 1 с наружной стороны прикреплены генераторы 10 килогерцовой частоты, от которых запитаны гребешковые электрогазоразрядные лампы 11, установленные с внутренней стороны основания радиально с регулируемым зазором.
Под каждую секцию 5 цилиндрического перфорированного резонатора 2 к боковой поверхности цилиндрического экранирующего корпуса 1 пристыкованы перевернутые усеченные пирамидальные резонаторы 7 из неферромагнитного материала без оснований, содержащие заслонки 9 вместо оснований малого диаметра. Конструкционные размеры пирамидальных резонаторов 7 согласованы с длиной волны (12,24 см).
С наружной стороны к боковой поверхности каждого усеченного пирамидального резонатора 7, ближе к стыку с цилиндрическим экранирующим корпусом, прикреплены магнетроны СВЧ-генераторов с излучателями, направленными внутрь.
Технологический процесс калибровки и предпосадочной обработки лука-севка воздействием электрофизических факторов происходит следующим образом. Закрыть заслонку приемной емкости 4 и засыпать не калиброванный лук-севок. Включить электродвигатель для вращения секционного цилиндрического перфорированного неферромагнитного резонатора 2 за счет зацепления ведущей звездочки с венцом 3. Включить генераторы килогерцовой частоты 10, после чего электрогазоразрядные лампы 11 начинают коронировать между основанием экранирующего корпуса и гребешками. Происходит ионизация и озонирование воздуха. Открыть заслонку приемной емкости 4 и включить СВЧ-генераторы 5 для возбуждения электромагнитного поля сверхвысокой частоты. Известно, что при размещении электрогазоразрядных ламп 11, запитанных от генератора килогерцовой частоты в электромагнитное поле сверхвысокой частоты происходит усиление коронного разряда, а следовательно, повышение концентрации ионизированного и озонированного воздуха и излучения бактерицидного потока ультрафиолетовых лучей. Лук-севок разной фракции, попадая в секционный цилиндрический перфорированный резонатор при вращении со скоростью меньше критической калибруется. Критическая частота вращения, это когда лук-севок, прижимаемый к обечайке резонатора центробежными силами, не отрывается от нее и начинает совершать полный оборот. Самый мелкий лук-севок проходит через отверстия перфорации первой секции 5 резонатора в соответствующий пирамидальный резонатор 7. Далее сырье за счет наклона и вращения цилиндрического резонатора перемещается во вторую секцию 5, где диаметр отверстий перфорации больше, чем в первой секции. Поэтому лук-севок калибруются на фракции соответствующего диаметра в следующий пирамидальный резонатор 7. Процесс калибровки продолжается до последней секции 5, где самые крупные луковицы проходят через отверстия соответствующего диаметра перфорации резонатора 2. В процессе калибровки лук-севок эндогенно прогревается, обеззараживается и находится в ионизированном воздухе эффективной концентрации, регулируемой зазором между основанием гребешковой электрогазоразрядной лампой и мощностью генераторов килогерцевой частоты. Ионизированный воздух распространяется и в пирамидальных резонаторах 7, где также эффективно действует на биологический объект. Излучение через отверстия перфорации секций цилиндрического резонатора в сторону пирамидальных резонаторов и наоборот происходит, при этом мощность потока излучений выше через отверстия перфорации последней секции резонатора. Излучение за пределы установки ограничено за счет цилиндрического экранирующего корпуса, выполненного из неферромагнитного материала (алюминий, медь и т.п.) и использования заслонок на приемной емкости и на малом основании пирамидальных резонаторов 7. Калиброванный, предварительно прогретый, ионизированный и озонированный лук-севок в пирамидальных резонаторах подвергается дополнительному воздействию электромагнитного поля сверхвысокой частоты, разной дозы в каждом резонаторе 7, так размеры лука-севка в них различны. Итак, реализация комплексного воздействия электрофизических факторов на сырье в процессе калибровки возможна в сверхвысокочастотной установке с секционным цилиндрическим перфорированным вращающимся резонатором, обеспечивающим калибровку лука-севка на фракции, обеззараживание за счет озонированного воздуха и обработку ионизированным воздухом повышенной концентрации.
Источники информации
1. Патент №2703062 РФ, МПК АО1С 1/08. Установки для предпосадочной обработки клубней картофеля воздействием электрофизических факторов / А.И. Котин, Г.В. Новикова, Е.А. Шамин, О.В. Михайлова, М.В. Белова; заявитель и патентообладатель НГИЭУ (RU). - №2018117070; заявл. 07.05.2018. Бюл. №29 от 15.10.2019. - 11 с.
2. phisioterapia.ru›pribory/ultraton…apparat/
название | год | авторы | номер документа |
---|---|---|---|
СВЧ установка с магнетронным резонатором для термообработки вторичного сырья животного происхождения | 2023 |
|
RU2817879C1 |
Установка для предпосадочной обработки овощных культур комплексным воздействием электрофизических факторов в непрерывном режиме | 2019 |
|
RU2728461C1 |
Микроволновая установка для предпосадочной обработки овощных культур в непрерывном режиме | 2019 |
|
RU2728388C1 |
СВЧ установка для термообработки некондиционного вторичного мясного сырья воздействием электрофизических факторов | 2023 |
|
RU2813899C1 |
Установка для санитарной обработки волосовидного сырья воздействием электрофизических факторов | 2019 |
|
RU2728587C1 |
МНОГОРЕЗОНАТОРНАЯ СВЧ-УСТАНОВКА ДЛЯ РАЗМОРАЖИВАНИЯ КОРОВЬЕГО МОЛОЗИВА В НЕПРЕРЫВНОМ РЕЖИМЕ | 2020 |
|
RU2759018C2 |
Установка с источниками электрофизических факторов в усеченном коническом резонаторе для термообработки вторичного жиросодержащего мясного сырья | 2023 |
|
RU2820344C1 |
СВЧ установка с квазитороидальным резонатором для термообработки и обеззараживания вторичного мясного сырья | 2023 |
|
RU2817882C1 |
Сверхвысокочастотная установка со сферическими резонаторами для термообработки жиросодержащего сырья | 2016 |
|
RU2667751C2 |
Сушилка мясных отходов с СВЧ-энергоподводом в электроприводной цилиндрический ситовый резонатор | 2023 |
|
RU2820685C1 |
Изобретение относится к сельскому хозяйству. В установке для калибровки и предпосадочной обработки лука-севка, а именно в цилиндрическом экранирующем корпусе, расположенном под наклоном к горизонтальной плоскости, соосно установлен секционный цилиндрический перфорированный резонатор из неферромагнитного материала без оснований. С наружной стороны одного основания корпуса закреплены приемная емкость с заслонкой и магнетроны СВЧ-генераторов. К другому основанию корпуса с наружной стороны прикреплены генераторы килогерцевой частоты, от которых запитаны гребешковые электрогазоразрядные лампы, установленные с внутренней стороны основания радиально с регулируемым зазором. Под каждую секцию резонатора к боковой поверхности корпуса пристыкованы перевернутые усеченные пирамидальные резонаторы из неферромагнитного материала без оснований, содержащие заслонки вместо оснований малого диаметра. С наружной стороны к боковой поверхности каждого усеченного пирамидального резонатора, прикреплены магнетроны СВЧ-генераторов. Изобретение обеспечивает высокую эффективность предпосевной обработки лука. 6 ил.
Установка для калибровки и предпосадочной обработки лука-севка воздействием электрофизических факторов характеризуется тем,
что в цилиндрическом экранирующем корпусе, расположенном под наклоном к горизонтальной плоскости, соосно установлен секционный цилиндрический перфорированный резонатор из неферромагнитного материала без оснований, диаметр которого согласован с длиной волны, вращающийся от электродвигателя за счет зацепления ведущей звездочки с венцом, охватывающим его по периметру,
причем с наружной стороны одного основания цилиндрического экранирующего корпуса закреплены приемная емкость с заслонкой и магнетроны СВЧ-генераторов, излучатели которых направлены внутрь цилиндрического резонатора, собранного из перфорированных секций с отверстиями разного диаметра, причем диаметр отверстий каждой последующей секции увеличивается, начиная со стороны приемной емкости,
а к другому основанию экранирующего корпуса с наружной стороны прикреплены генераторы килогерцевой частоты, от которых запитаны гребешковые электрогазоразрядные лампы, установленные с внутренней стороны основания радиально с регулируемым зазором,
при этом под каждую секцию цилиндрического перфорированного резонатора к боковой поверхности цилиндрического экранирующего корпуса пристыкованы перевернутые усеченные пирамидальные резонаторы из неферромагнитного материала без оснований, содержащие заслонки вместо оснований малого диаметра, а конструкционные размеры пирамидальных резонаторов согласованы с длиной волны,
причем с наружной стороны к боковой поверхности каждого усеченного пирамидального резонатора, ближе к стыку с цилиндрическим экранирующим корпусом, прикреплены магнетроны СВЧ-генераторов с излучателями, направленными внутрь.
0 |
|
SU82511A1 | |
Агрегат для сшивки деревянных ящиков скобами и проволокой | 1958 |
|
SU123691A1 |
СПОСОБ ПРЕДПОСАДОЧНОЙ ОБРАБОТКИ СЕМЕННОГО МАТЕРИАЛА СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР И ПОСЛЕУБОРОЧНОЙ ОБРАБОТКИ УРОЖАЯ | 2012 |
|
RU2487519C1 |
УСТАНОВКА ДЛЯ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН | 2004 |
|
RU2278491C2 |
Авторы
Даты
2020-07-30—Публикация
2020-02-06—Подача