Заявляемое техническое решение относится к области электронагревательных приборов, предназначенных для подогрева и испарения воды в расходном режиме и в составе замкнутых водяных и пароводяных контуров.
«Уровень техники». Известен электродный водонагреватель (реферат заявки на изобретение RU 95114849 от 04.09.95 г., опубл. Б.И. 20.08.1997, F24H 1/20), содержащий перфорированные электроды, которые «установлены на равном расстоянии с образованием сквозных каналов и расположены по электрическим фазам поочередно», электродный водонагреватель работает следующим образом: подогреваемая вода поступает через входной патрубок, и, проходя сквозь проницаемые электроды, нагревается, как рабочая среда печи сопротивления; движение рабочей среды может осуществляться за счет напора гидравлической сети (расходный режим) или за счет естественной циркуляции (в режиме замкнутого контура), ОТЛИЧАЮЩИЙСЯ тем, что для выполнения этих условий и обеспечения энергетической сверхэффективности при минимальном гидравлическом сопротивлении системы, предлагается электрод выполнить в виде тора.
Технический результат изобретения.
Выполнение электрода в виде тора («электрод тора») и использование тороидального электрода обеспечивает энерегетическую сверхэффективность промышленных установок при минимальном гидравлическом сопротивлении системы.
Раскрытие изобретения.
Анализ протекающих процессов в пространстве тороидального электрода целесообразно проводить с помощью теории подобия.
Предлагаемое решение основывается на теории подобия элементарного вибратора с элементами аналогии.
1) Исследование электродных систем представляет важное значение в связи с увеличением области применения данных систем для решения производственных задач. Теоретический и практический интерес представляет исследование и моделирование электромагнитных процессов, протекающих в различных пространственно-энергетических областях энергоустановок. Например, рассмотрим электродную систему.
Если есть отверстие в плоскости, то в окружающем пространстве появляется искажение электромагнитного поля за счет нарушения экранировки.
Определение поля сводится к решению двух задач:
- нахождение распределения поля между краями отверстия (внутренняя задача);
Анализ протекающих процессов в пространстве проницаемого теплового излучателя целесообразно проводить с помощью теории подобия.
Предлагаемое решение основывается на теории подобия элементарного вибратора с элементами аналогии.
Аналогия основывается на конструктивном и теоретическом подобии того, как провод элементарного вибратора заканчивается металлическими шариками, так и прямоугольное отверстие с торца выполняется в виде округлых отверстий. Данная аналогия теоретически обоснованна исходя из следующих оснований.
Конструктивно аналогию можно обосновать следующим образом. Основой анализа является элементарный электрический вибратор.
Элементарный электрический вибратор - бесконечно малый элемент линейного электрического тока (идеальный вибратор - с параметрами тока одинаковыми по амплитуде и фазе). Практической реализацией элементарного электрического вибратора является «диполь Герца» (короткий провод (сравнивается с длиной волны) с шарами на концах, ток, вдоль которого (обтекаемого током) мало меняется по амплитуде).
«Вибратор Герца» («диполь Герца») - простейшая антенна, медный стержень с металлическими шарами (или полосами) на концах, в разрыв которого (искровой промежуток), включается катушка Румкорфа (в режиме излучения) или нагрузки (в режиме приема). Диполь Герца применялся Генрихом Герцем (1888 г.) в опытах по подтверждению существования электромагнитных волн.
«Катушка Румкорфа» (англ., «Induction coil») - устройство для преобразования первичного постоянного тока во вторичный переменный ток высокого напряжения, для получения импульсов высокого напряжения (трансформатор). Индукционную катушку, генерирующую токи высокой частоты, в 1851 г. изобрел Румкорф (Ruhmkorff) Генрих Даниэль (1803-1877).
Конструктивно «катушка Румкорфа» состоит из цилиндрической части, с центральным железным стержнем внутри, на которую намотана первичная обмотка из толстой проволоки.
Подобие «элементарного вибратора» (Фиг. 2) теоретически обосновывается следующим образом.
Для объяснения полученных результатов исследований - это особенность распределения электромагнитного поля.
Известно, что при исследовании электромагнитного поля, излучаемого антенной, принято все пространство вокруг антенны подразделять на «ближнюю», «среднюю» (или «промежуточную») и «дальнюю зоны».
«Ближняя зона» ограничивается радиусом, величина которого много меньше длины волны «Дальняя зона» расположена от антенны на расстоянии, намного превышающем длину волны В «средней зоне» расстояние от антенны до любой точки соизмеримо с длиной волны.
В «ближней зоне» энергия излучения не учитывается. Границы ближней зоны зависят от частоты: чем выше частота, тем ближе граница зоны к источнику.
Особенностью рассмотрения теплового излучателя является параметры питающей электрической сети (например, частота ƒ=50 Гц). Для этих параметров длина волны составляет При данном упрощении практически на любом расстоянии от излучателя пространство может теоретически определяться как «ближняя зона».
Данные исследований позволяют говорить, что распределения энергии излучения в «ближней зоне» также характеризуется рядом интересных особенностей.
Если рассматривать радиочастотный диапазон: при параметрах частот порядка значений 1010 Гц и выше, длина волны измеряется в сантиметрах (дальняя зона).
«Ближняя зона» (зона «квазистационарности») характеризуется постоянством во времени мгновенных значений векторов переменного поля (законы постоянных во времени полей).
Аналитически аналогию можно обосновать следующим образом. Особенностью распределения волновых процессов потенциалов в «дальней зоне» («зоне излучения») является преобладание составляющих Е и Н, меняющихся пропорционально 1/r и совпадающих по фазе. Основываясь на данных упрощениях можно в известных выражениях для На и Ej пренебречь всеми членами, кроме первых.
Известно, что волна, имеющая такой характер, называется сферической, она имеет структуру поля волны типа ТЕМ (буквами ТЕМ обозначают поперечные волны, то есть такие волны, у которых в направлении распространения отсутствуют составляющие векторов напряженностей электрического и магнитного полей).
Таким образом, в сферической волне и в плоской, энергия электрического поля равна энергии магнитного поля (еЕ2=mH2).
Эквифазная поверхность сферы (радиус r=const) характеризуется одинаковой фазой колебания напряженности магнитного поля Н в конкретный момент времени и отличается амплитудой (зависит от угла j) (определяется аргументом косинуса).
Амплитуда колебаний напряженности варьируется от нулевого значения на «полюсах» до максимального - на «экваторе» (плоскости перпендикулярной оси вибратора и проходящей через его середину). Характеристику свободно распространяющейся энергии (активной мощности) определяет совпадение по фазе Н и Е. Данная особенность может объяснять полученные результаты исследований.
Диаграмма зависимости модуля Е (энергии электрического) или Н (энергии магнитного) в дальней зоне называется «диаграммой направленности» (элементарный электрический вибратор обладает направленными свойствами).
Диаграмму зависимости векторов Е и Н в дальней зоне от угла θ называют диаграммой направленности (Фиг. 3).
Выражение вектора Пойнтинга для дальней зоны:
Модуль вектора Пойнтинга (мгновенное значение):
Вектор Пойнтинга направлен по радиусу, а среднее значение его модуля за период:
Максимальное излучение (максимальная напряженность поля) наблюдается в экваториальной (меридиональной) плоскости (Фиг. 4, 5). Диаграмма (форма восьмерки) характеризует зависимость Е и Н от j в «дальней зоне».
Численно мощность, излучаемая элементарным электрическим вибратором, определяется путем интегрирования вектора Пойнтинга по эквифазной поверхности (радиус поверхности выбирается достаточно большим, чтобы она находилась в дальней зоне). Вектор Пойтинга назван по имени английского физика Дж.Г. Пойнтинга (J.Н. Poynting; 1852-1914).
Проблемы электромагнитной массы рассматривались в конце XIX века. Умовым (1873 г.) был сформулирован закон сохранения энергии для движущихся сред. Пойнтингом был доказан закон сохранения для электромагнитных волн (1884 г.). Томсон определил, что потенциальная энергия связана с полем неподвижного заряда, а кинетическая энергия - с магнитным полем движущегося заряда.
Лоренц привел уравнения Максвелла к волновым уравнениям (поле заряда и электромагнитная волна имеют общую природу и описываются уравнением с запаздывающими потенциалами). Это подтвердилось «Специальной теорией относительности». Однако оказалось, что в рамках «запаздывающих потенциалов» проблема электромагнитной массы не имеет удовлетворительного решения.
Теоретически определена эквивалентность массы и энергии как современная физическая концепция, согласно которой масса тела является мерой энергии, заключенной в нем, т.е. масса неподвижного тела (так называемая масса покоя) является мерой внутренней энергии этого тела и любому виду энергии соответствует некая масса. Например, было введено понятие «релятивистской массы» как характеристики кинетической энергии движущегося тела.
Принцип сформулирован А. Эйнштейном в 1905 году. Энергия тела равна массе тела, умноженной на размерный множитель квадрата скорости света в вакууме:
Е=mc2,
где Е - энергия тела, m - его масса, с - скорость света в вакууме, равная 299792458 м/с.
Однако определение полной эквивалентности массы любому виду энергии не является правильным и термин «релятивистская масса» профессионально не применяется, а когда говорят о массе, имеют в виду массу покоящегося тела, а «релятивистская масса» - инертность свойств движущегося тела.
Эквивалентность массы тела запасенной в теле энергии - главный практически важный результат специальной теории относительности.
Известно, что понятие напряженности магнитного поля построено на формальной аналогии полей неподвижных зарядов и неподвижных намагниченных тел. Такая аналогия часто оказывается весьма полезной, т.к. позволяет перенести в теорию магнитного поля методы, разработанные для электростатических полей.
Напряженность магнитного поля первоначально была введена в форме закона Кулона через понятие магнитной массы, аналогичной электрическому заряду, как механическая сила взаимодействия двух точечных магнитных масс в однородной среде, которая пропорциональна произведению этих масс и обратно пропорциональна квадрату расстояния между ними:
где m1 и m2 - взаимодействующие магнитные массы; r - расстояние между точками, в которых магнитные массы считаются сосредоточенными; k - коэффициент, зависящий от свойств среды и системы единиц измерения.
Сила ƒ направлена по прямой, соединяющей центры магнитных масс. Магнитные массы одного знака отталкиваются, а противоположного - притягиваются.
Электромагнитное поле характеризуется собственной энергией поля. Полная энергия определяется суммой энергий электрического и магнитного полей. Электромагнитное поле занимает замкнутый объем V, то:
Энергия электромагнитного поля не может оставаться постоянной величиной. На изменение энергии внутри замкнутого объема влияют следующие факторы:
- часть энергии электромагнитного поля может превратиться в другие виды энергии, например, механическую;
- внутри замкнутого объема могут действовать сторонние силы, которые могут увеличивать или уменьшать энергию электромагнитного поля, заключенную в рассматриваемом объеме;
- рассматриваемый замкнутый объем V может обмениваться энергией с окружающими телами за счет процесса излучения энергии.
Интенсивность излучения характеризуется вектором Пойнтинга Объем V имеет замкнутую поверхность S. Изменение энергии электромагнитного поля можно рассматривать как поток вектора Пойнтинга сквозь замкнутую поверхность S (Фиг. 6), т.е. причем возможны варианты Нормаль, проведенная к поверхности всегда является внешней (Фиг. 6).
Вектор Пойтинга - вектор плотности потока электромагнитной энергии в любой момент времени направлен по радиусу в сторону от диполя:
где - это мгновенные значения напряженности поля.
Переход от интеграла по поверхности к интегралу по объему V осуществляется на основе теоремы Остроградского-Гаусса.
Зная, что подставим эти выражения в формулу (2). После преобразования, получим выражение в виде:
Из (3) левая часть выражается суммой, состоящей из трех слагаемых.
Слагаемое - мгновенная мощность потерь, обусловленная в замкнутом объеме токами проводимости (тепловые потери энергии поля).
Второе слагаемое - работа сторонних сил, произведенная в единицу времени (мощность РСТОР.>0, РСТОР.<0).
Если РСТОР.> - в объеме V добавляется энергия (сторонние силы - генератор). Если РСТОР.<0 - в объеме V происходит уменьшение энергии (сторонние силы - нагрузка).
Последнее слагаемое для линейной среды - скорость изменения энергии электромагнитного поля внутри объема V:
Таким образом, формула (3) - в виде:
- теорема Пойнтинга (характеризует баланс энергии внутри произвольной области, в которой существует электромагнитное поле).
Таким образом, чем больше сопротивление излучения R, тем больше излученная мощность при том же токе I. Из анализа формул (1) и (2) видно, что сопротивление излучения пропорционально квадрату длины излучателя и, что особенно важно, обратно пропорционально квадрату длины волны Так как длина волны то излученная мощность пропорциональна квадрату частоты. Если частота мала, например всего 50 Гц, то излучения практически нет. При радиочастоте излучение значительно. Например, при частоте 50 МГц излучение больше, чем при частоте 50 Гц, в 1012 раз.
Рассмотрели электромагнитное поле, излучаемое элементарным электрическим вибратором. Для решения некоторых задач по определению электромагнитного поля удобнее пользоваться понятием элементарного магнитного вибратора.
Таким вибратором называют элемент линейного магнитного тока Iм или линейный элемент, на поверхности которого имеется ненулевая тангенциальная составляющая вектора напряженности электрического поля Е, перпендикулярная оси элемента, а тангенциальная составляющая вектора напряженности магнитного поля Н равна нулю.
В дальней зоне, где можно пренебречь составляющими, пропорциональными 1/r2 и 1/r3, напряженности полей элементарного магнитного вибратора равны (Фиг. 7):
Поле элементарного магнитного вибратора имеет одинаковую структуру поля элементарного электрического вибратора (Е и Н меняются местами).
Вариант магнитного вибратора - проницаемый излучатель (щелевая антенна). Элементарный проницаемый излучатель - это тонкий металлический лист с высокой проводимостью, в котором прорезана щель, длина которой много меньше длины волны и значительно больше ширины щели а Для генерации излучения подводится Э.Д.С. к периметру пластины (Фиг. 1) для разрезания токов проводимости.
Излучатель может характеризоваться бесконечной проводимостью и одинаковой напряженностью электрического поля вдоль длины щели по величине и фазе равной Е0 (диполь Герца) (Фиг. 2) или конечными размерами с тангенциальным электрическим полем и отсутствием тангенциального магнитного поля. Поэтому проницаемый излучатель характеризуется параметрами элементарного магнитного вибратора и напряженностью полей по формулам магнитного вибратора.
2 Решение внешней задачи - определение электромагнитного поля в полупространстве за экраном теплового излучателя, в котором прорезано отверстие, производится с помощью леммы Лоренца, согласно которой для двух независимых электромагнитных полей и (напряженности электрического и магнитного поля) изменяющихся по одному гармоническому закону, имеет место соотношение:
где s - поверхность экрана, а s1 - та часть плоскости xoz, которая ограничена щелью.
Лемма Лоренца связывает два независимых поля на границе некоторого объема с полем внутри объема. В качестве аналога леммы Лоренца можно указать формулу Грина, которая находит широкое применение в математической физике (связывает двойной и криволинейный интеграл).
Формула Грина
Пусть G - плоская область и ее граница L является кусочно-гладким контуром. Пусть в замкнутой области заданы функции Р(х,у), Q(x,y), непрерывные на вместе со своими частными производными. Тогда справедлива формула:
Формула Стокса
Пусть S простая гладкая двусторонняя поверхность, ограниченная кусочно-гладким контуром L. Формула Стокса:
Или если заменить поверхностный интеграл второго рода на поверхностный интеграл первого рода, то получим:
где cosα, cosβ, cosγ означают направляющие косинусы нормали, отвечающей выбранной стороне поверхности.
Полагая эту формулу можно переписать так: т.е. циркуляция векторного поля по контуру L равна потоку вихря этого поля через поверхность S, ограниченную контуром L.
Формула Остроградского
Аналог формулы Грина для тройных интегралов. Пусть тело V ограничено кусочно-гладкой поверхностью S, тогда или, если заменить поверхностный интеграл второго рода на поверхностный интеграл первого рода:
Полагая эту формулу можно переписать в виде:
т.е. интеграл по области от дивергенции векторного поля равен потоку этого поля через поверхность, ограничивающую данную область.
Формулы Грина, Стокса и Остроградского выражают интеграл, распространенный на некоторый геометрический образ, через интеграл, взятый по границе этого образа. При этом формула Грина относится к случаю двумерного пространства, формула Стокса - к случаю двумерного «кривого» пространства, а формула Остроградского - к случаю трехмерного пространства.
На основную формулу интегрального исчисления:
можно смотреть как на некоторый аналог этих формул для одномерного пространства.
Для определения поля и в некоторой точке М(x0, y0, z0) размещаем в точке М элементарный вибратор, где - момент вибратора.
Направление вектора определяется произвольно. Тангенциальная составляющая вектора напряженности электрического поля на поверхности плоскости электрода обращается в нуль при зеркальном изображении вибратора относительно плоскости электрода.
Разложим вектор по осям координат:
Зеркальное изображение - вибратор, находящийся в точке M(x0, -y0, z0). Момент вибратора:
Формула вектора напряженности электрического поля элементарного отверстия в дальней зоне после циклической перестановки вектора
В соответствии со вторым уравнением Максвелла, вектор напряженности магнитного поля:
Формулами (16) и (17) определяется поле элементарного отверстия в дальней зоне.
2) Совершенствование технических средств, систем и алгоритмов управления в области электронагревательных приборов, предназначенных для подогрева и испарения воды в расходном режиме и в составе замкнутых водяных и пароводяных контуров представляет важное значение.
Рассмотрим возможность перестановки магнитных и электрических систем на основе аналогии структуры магнитного поля в пространстве структуре электрического поля излучателя при рассмотрении внутренней и внешней задачи.
Вектор Герца (электромагнитное поле источников в виде токов и зарядов). Проводимость излучения q∑ определяет излучающие свойства отверстия антенны:
или для свободного пространства:
по определяющей формуле:
При аналитическом сравнении поля элементарного отверстия с полем элементарного вибратора, если не учитывать постоянные множители, то для перехода от формул:
к формуле:
необходимо вектор заменить на вектор вектор заменить на вектор - а вместо вектора поставить вектор
Вектора Герца элементарного вибратора:
Вектор Герца определяет электромагнитное поле с источниками в виде токов и зарядов. Связь определяется уравнениями поля в комплексных амплитудах (идеальный диэлектрик):
Из курса высшей математики известно, что или вихрь - векторный дифференциальный оператор.
Обозначается как векторное умножение дифференциального оператора набла на векторное поле:
∇×.
Ротор поля F:
rotF≡∇×F.
Поле rot F (длина и направление вектора rot F в каждой точке пространства) характеризует вращательную составляющую поля F соответственно в каждой точке.
В трехмерной декартовой системе координат ∇×F вычисляется следующим образом:
или как векторное произведение:
где i, j и k - орты для осей х, y и z соответственно.
Векторное поле, ротор которого равен нулю в любой точке, называется потенциальным (безвихревым).
Физическая интерпретация. По теореме Коши-Гельмгольца распределение скоростей сплошной среды вблизи точки «О» задается уравнением:
v(r)=vO+ω×r+∇ϕ+о(r),
где ω - вектор углового вращения элемента среды в точке «О», а ϕ - квадратичная форма от координат - потенциал деформации элемента среды.
Применяя к формуле Коши-Гельмгольца операцию ротора, получим, что в точке «О» справедливо равенство rot v=2ω, и, следовательно, можно заключить, что когда речь идет о векторном поле, являющемся полем скоростей некоторой среды, ротор этого векторного поля в заданной точке равен удвоенному вектору углового вращения элемента среды с центром в этой точке.
Например, если в качестве векторного поля взять поле скоростей ветра на Земле, то в северном полушарии для антициклона, вращающегося по часовой стрелке, ротор будет направлен вниз, а для циклона, вращающегося против часовой стрелки - вверх. В тех местах, где ветры дуют прямолинейно и с одинаковой скоростью, ротор будет равен нулю (у неоднородного прямолинейного течения ротор ненулевой).
Простое векторное поле (Фиг. 8)
Векторное поле, линейно зависящее от координат х и у:
Очевидно, что поле закручено. Если мы поместим колесо с лопастями в любой области поля, мы увидим, что оно начнет вращаться по направлению часовой стрелки. Используя правило правой руки, можно ожидать ввинчивание поля в страницу. Для правой системы координат направление в страницу будет означать отрицательное направление по оси z.
Вычислим ротор:
Как и предположили, направление совпало с отрицательным направлением оси z. В данном случае ротор является константой, так как он независим от координаты. Количество вращения в приведенном выше векторном поле одно и то же в любой точке (х, у).
называется криволинейный интеграл второго рода, взятый по произвольному замкнутому контуру Г. По определению:
где F={Fx, Fy, Fz} - векторное поле (или вектор-функция), определенное в некоторой области D, содержащей в себе контур Г, dl={dx, dy, dz} - бесконечно малое приращение радиус-вектора l вдоль контура. Окружность на символе интеграла подчеркивает тот факт, что интегрирование производится по замкнутому контуру.
Аддитивность. Циркуляция по контуру, ограничивающему несколько смежных поверхностей, равна сумме циркуляций по контурам, ограничивающим каждую поверхность в отдельности то есть (Фиг. 9).
Дивергенцией (или расходимостью) дифференцируемого векторного поля называется скаляр:
Ротором (или вихрем) дифференцируемого векторного поля называется вектор, который с помощью символической записи удобно представить в виде векторного произведения
Уравнения связи поля среды с потерями формируется заменой εа на εk.
Сторонние токи и заряды считаются известными. Решением уравнений (8) являются функции и координат х, у и z в каждой точке среды.
Выразить векторы и через вспомогательные функции можно на основании исходных уравнений системы.
Наиболее просто выполнить условия четвертого уравнения, если где А0 - векторный потенциал.
Если подставить во второе уравнение системы (8), то получаем потенциальное поле вектора:
и
или
где функция ϕ0 - скалярный потенциал.
Первое и третье уравнение - вектор и
где - волновое число (диэлектрик), коэффициент распространения (в общем случае).
Уравнения не устанавливают непосредственной связи между векторным потенциалом и токами, скалярным потенциалом и зарядами (статические поля) без учета произвольного выбора векторного и скалярного потенциалов. Для решения этой задачи могут применяться новые вспомогательные функции и которые определяют то же самое электромагнитное поле в соответствии с уравнениями (9):
где ψ - произвольная скалярная функция.
Уравнение связи или условие Лоренца в новых потенциалах:
Если известны и ϕ0, решение уравнений можно получить, при функции ψ как решения уравнения:
Потенциалы и определяются (при выполнении условий уравнений связи) следующими уравнениями:
Решение двух неоднородных волновых уравнений (12) при условии уравнения связи (11) однозначно определяет электромагнитное поле по токам и зарядам. Стандартная задача определяется необходимостью уменьшать число неизвестных. Для обеспечения тождественности используется функция:
где - амплитуда нового вспомогательного вектора (электрический вектор Герца):
Если вектор - в первое уравнение (12):
где - вектор сторонней поляризованности токов и зарядов.
Решение уравнения (15) определяет искомое поле и с вспомогательными формулами:
Подставляя вектор Герца в формулы (16):
Вектор напряженности электрического поля лежит в плоскости векторов и проходящей через ось вибратора и точку наблюдения, вектор напряженности магнитного поля перпендикулярен этой плоскости, т.е. векторы и перпендикулярны.
Параметры векторов поля могут зависеть от расстояния r. Тогда выражение вектора разбивается на три составляющие, а для вектора - на два слагаемых. Эти составляющие функционально уменьшаются в соответствии с обратно пропорциональной зависимостью по третьей, второй и первой степени произведения kr.
На основании такой математической модели поле элементарного вибратора можно представить в виде трех зон: ближней, промежуточной и дальней. В дальней зоне произведение kr много больше единицы, что является наиболее важным при изучении процессов излучения, поэтому для упрощения вычислений и в формулах учитываются множители с 1\(kr) в наименьшей степени:
Поле отверстия и поле вибратора могут характеризоваться так называемой перестановочной двойственностью (аналогия: поле вибратора и поле рамки).
При анализе напряженности электрического поля отверстия необходимо учитывать определенные особенности: учет граничных условий и обращения тангенциальной составляющей вектора напряженности электрического поля в нуль при наличии идеально проводящего экрана.
Принцип двойственности (перехода от поля вибратора к полю отверстия) точно формулируется: «решение основных уравнений поля для вектора напряженности электрического поля при заданных граничных условиях для этого вектора справедливо для вектора напряженности магнитного поля при том же граничном условии, но принимаемом для вектора напряженности магнитного поля».
Применяемость принципа двойственности при проницаемых излучателях (например, тепловых) с бесконечно идеально проводящей плоской поверхности (отверстие - параллелограмм), при распределении электрического поля между краями отверстия (Фиг. 10, а), характеризуется примером.
В соответствии с принципом двойственности структура магнитного поля в пространстве вокруг пластинки аналогично структуре электрического поля отверстия над экраном излучателя, т.к. причиной появления магнитного поля (вектор напряженности перпендикулярен оси излучателя) является ток, протекающий вдоль пластины (Фиг. 10, б).
На основании следствия симметрии уравнений Максвелла относительно векторов напряженностей электрических и магнитных полей при генерации электрического поля при изменении магнитного и наоборот. Магнитное поле магнитного излучателя направлено перпендикулярно электрическому полю.
Граничные условия (обращения в нуль тангенциальной составляющей) для вектора напряженности электрического и магнитного полей одинаковы (Фиг. 10, б).
Принцип двойственности был предложен в 1944 г. российским ученым (радиотехником) в области антенн А.А. Пистолькорсом как электродинамическое обобщение принципа Бабине (дифракция на препятствии) в оптике для расчета дифракции света на плоских непрозрачных экранах и отверстиях, совпадающих по форме с экраном. Развитие принципа в работах Я.Н. Фельда и др.
Приближенная теория дифракции создана в 1816 г. О. Френелем (А. Fresnel). Дифракция, по Френелю, - результат интерференции вторичных волн. Дифракция Френеля проявляется в виде интерференции сферических (цилиндрических) волн, приходящих в точку наблюдения от неоднородности, с которой взаимодействует электромагнитная волна.
Дифракция Фраунгофера («дифракция вдали») наблюдается в случае, если размер отверстия значительно меньше зоны Френеля («дифракция в сходящихся лучах»).
Согласно теореме Бабине дифракционные картины от преграды (нить, мелкая круглая частица и т.п.) и от равного ей по размеру отверстия (щель, круглое отверстие и т.п.) должны быть совершенно одинаковы вне области свободного (прямого) пучка («картина дифракции Фраунгофера не меняется, если экраны превратить в диафрагмы, а последние - в экраны»). Таким образом, экран может служить фокусирующей системой в той же степени, что и отверстие.
Вектор индукции магнитного поля рамки с током на больших расстояниях от рамки, может быть вычислен по формуле:
где - магнитный момент рамки с током I(t); R' - расстояние от центра рамки (начала декартовой системы координат XYZ) до точки наблюдения.
Рассмотрим расчет по формуле (5) вектора индукции магнитного поля создаваемого контуром по которому протекает ток I(t). Производя интегрирование в этой формуле по поперечному сечению проводника рамки в предположении малого размера рамки по сравнению с расстоянием до точки наблюдения поля, получим выражение для через интеграл по контуру рамки:
где R' - расстояние от центра рамки (начала декартовой системы координат XYZ) до точки наблюдения; R - расстояние от точки интегрирования, расположенной на контуре до точки наблюдения.
Для расчета контурного интеграла умножим его скалярно на произвольный вектор и применим теорему Стокса, выбирая в качестве вспомогательной поверхности натянутой на контур рамки, ограничиваемый ею круг:
где - ориентированная площадь рамки, расположенной в плоскости XOY; - единичный вектор в направлении оси OZ; нижний индекс 's' у символа ротора означает, что необходимые для его определения дифференцирования производятся по координатам точек поверхности; R - расстояние от точки интегрирования, расположенной на поверхности рамки S, до точки наблюдения.
Учитывая, что вектор постоянный, для значения ротора следует формула:
Перейдем к дифференцированию по координатам точки наблюдения, сопровождающемуся изменением знака производной и, принимая во внимание малость размеров рамки (R'≈R), получаем после применения теоремы о среднем к интегралу по поверхности рамки, получим:
Принимая во внимание инвариантность смешанного произведения по отношению к циклической перестановке его сомножителей, в виду произвольности вектора имеем:
Замечая, что - магнитный момент рамки с током, приходим к выражению:
Дальнейшие преобразования полученного выражения состоят в применении для расчета векторного произведения правила дифференцирования произведения двух функций, использованного в задаче, в результате которых получаем:
Для расчета внутреннего ротора можно использовать те же выкладки, что и при нахождении магнитного поля электромагнитной волны, излучаемой движущимся зарядом ввиду формальной аналогии, используемых для расчета формул. Тогда получаем, что на значительном удалении точки наблюдения от рамки с током, создаваемый ей вектор индукции магнитного поля может быть вычислен по формуле (20).
Можно сделать вывод о соответствии заявляемого технического решения критерию «новизна».
Сравнительный анализ заявляемого изобретения также показал, что применение данных компонентов в совокупности признаков обеспечивает энергетическую сверхэффективность промышленных установок при минимальном гидравлическом сопротивлении системы.
Таким образом, можно сделать вывод о соответствии заявляемого технического решения критерию «изобретательский уровень».
На Фиг. 11 изображена схема Тороидальный электрод.
название | год | авторы | номер документа |
---|---|---|---|
РАВНОВЕСНЫЙ ЛОКАЛЬНО-ТЕРМОДИНАМИЧЕСКИЙ ПРОНИЦАЕМЫЙ ТЕПЛОВОЙ ИЗЛУЧАТЕЛЬ С ВЫРОВНЕННЫМ РАСПРЕДЕЛЕНИЕМ ПОТЕНЦИАЛОВ В ПРОСТРАНСТВЕ | 2011 |
|
RU2496062C2 |
СПОСОБ ПРИЕМА РАДИОСИГНАЛОВ КРАЙНЕНИЗКОЧАСТОТНОГО ДИАПАЗОНА | 2011 |
|
RU2509398C2 |
ДИПОЛЬНЫЙ ИЗЛУЧАТЕЛЬ | 2011 |
|
RU2472261C1 |
ВИБРАТОРНАЯ АНТЕННА | 2014 |
|
RU2571156C2 |
КВАНТОВЫЙ СПОСОБ ИЗМЕРЕНИЯ НАПРЯЖЁННОСТИ, НАПРАВЛЕНИЯ, ГРАДИЕНТА МАГНИТНОГО ПОЛЯ ЗЕМЛИ И РЕАЛИЗУЮЩЕЕ ЕГО УСТРОЙСТВО | 2017 |
|
RU2680629C2 |
СПОСОБ ПРЕОБРАЗОВАНИЯ В ОТКРЫТОМ ПРОСТРАНСТВЕ ДВУХ НАПРАВЛЕННЫХ В ОДНУ СТОРОНУ ЛИНЕЙНО ПОЛЯРИЗОВАННЫХ МОНОГАРМОНИЧНЫХ ПОТОКОВ ЭЛЕКТРОМАГНИТНЫХ ВОЛН В НАПРАВЛЕННЫЙ ПОТОК ВОЛН ДЕ БРОЙЛЯ | 2013 |
|
RU2530223C1 |
СПОСОБ БЕСПРОВОДНОЙ ПЕРЕДАЧИ, ПРИЕМА ИНФОРМАЦИИ | 2014 |
|
RU2598312C2 |
РАДИОПЕРЕДАТЧИК КРАЙНЕНИЗКОЧАСТОТНОГО ДИАПАЗОНА | 2018 |
|
RU2706221C1 |
ПЕРЕДАЮЩИЕ ЛИНЕЙНЫЕ МАГНИТНЫЕ АНТЕННЫ (ЛМА) | 2010 |
|
RU2428774C1 |
Генератор электромагнитных импульсов | 2016 |
|
RU2650103C1 |
Заявляемое техническое решение относится к области электронагревательных приборов, предназначенных для подогрева и испарения воды в расходном режиме и в составе замкнутых водяных и пароводяных контуров. Суть изобретения заключается в том, что для выполнения этих условий и обеспечения энергетической сверхэффективности промышленных установок при минимальном гидравлическом сопротивлении системы предлагается электрод выполнить в виде тора. Выполнение электрода в виде тора и использование тороидального электрода обеспечивают энерегетическую сверхэффективность промышленных установок при минимальном гидравлическом сопротивлении системы. 11 ил.
Равновесный локально-термодинамический проницаемый тепловой излучатель с выровненным распределением потенциалов в пространстве, содержащий перфорированные электроды, которые установлены на равном расстоянии с образованием сквозных каналов и расположены по электрическим фазам поочередно, отличающийся тем, что электрод выполнен в форме тора.
РАВНОВЕСНЫЙ ЛОКАЛЬНО-ТЕРМОДИНАМИЧЕСКИЙ ПРОНИЦАЕМЫЙ ТЕПЛОВОЙ ИЗЛУЧАТЕЛЬ С ВЫРОВНЕННЫМ РАСПРЕДЕЛЕНИЕМ ПОТЕНЦИАЛОВ В ПРОСТРАНСТВЕ | 2011 |
|
RU2496062C2 |
RU 95114849 A, 20.08.1997 | |||
Способ получения стеклянных шариков | 1928 |
|
SU14644A1 |
ЭЛЕКТРОДНЫЙ НАГРЕВАТЕЛЬ ЖИДКОСТИ | 1998 |
|
RU2133558C1 |
ЭЛЕКТРОДНЫЙ НАГРЕВАТЕЛЬ ЖИДКОСТИ "МЕЧТА 4" | 1991 |
|
RU2030126C1 |
US 3767893 A1, 23.10.1973. |
Авторы
Даты
2020-08-13—Публикация
2019-06-11—Подача