СПОСОБ ПРЕДПОСАДОЧНОЙ ОБРАБОТКИ КЛУБНЕЙ КАРТОФЕЛЯ Российский патент 2020 года по МПК A01C1/00 A01G7/04 B82Y99/00 

Описание патента на изобретение RU2731990C2

Изобретение относится к сельскому хозяйству и может найти применение при совершенствовании технологии возделывания картофеля.

Цель изобретения - стимулирование роста и развития растений.

Для ускорения энергии прорастания и всхожести клубней картофеля, а также в целях повышения его урожайности широко применяются предпосевные электро-, физио- и био- обработки [1, 2, 3].

При проведении предпосевной электростимуляции семян зерновых культур в 40-ые годы XX века были выявлены явления: повышения всхожести, увеличение, как корней, так и листостебельной массы растений, развития скороспелости, повышения продуктивности культур и их качества [4, 5].

В интактном растительном организме формирование новых тканей и органов, составляющих основу роста и развития растений, находятся под постоянным влиянием эволюционно сложившихся и взаимосвязанных генетической, метаболической, гормональной, электрофизиологической и других систем [6, 7, 8].

Классическими экспериментами [9, 10, 11] достоверно установлено, что любой растительной клетке присуща электрическая полярность. При этом внутренняя часть клетки заряжена отрицательно по отношению к внешней среде и существующая напряженность может достигать до 100000 В/см [12, 13]. Между надземной и подземной массой растения во все периоды его роста и развития существует электрическая разность потенциалов, которая поддерживается электромагнитным полем земли и атмосферы. Причем корень по отношению к стеблю имеет положительный потенциал, стебель по отношению к корню - отрицательный. Постоянное напряжение находится в пределах 15-25 мВ, а плотность электрического тока достигает 4-8 мкА/см2.

Проведенный нами анализ результатов научных исследований [2, 3 … 11, 12] по вопросам предпосевной обработке семян позволили нам сформулировать направление в разработке предлагаемого способа обработки клубней картофеля, сущность которого заключается в воздействии «электрохимической активации» (ЭХА) на систему тканей и крахмалистобелковую массу, которая в свою очередь изменила биоэлектрический потенциал клубня.

Используя достижения нанотехнологии применения наночастицы (НЧ) при обработке клубней картофеля совместно в смеси с католитом, как допинг преодоления негативных воздействий [14], представляется возможность значительно повысить их энергию прорастания и всхожести [15, 16].

Известно, что недостаток кремния сдерживает рост и развитие растений. Выводы ведущих мировых ученых выдвигают свойства кремния на первое место [17]. При улучшении кремниевого питания повышается эффективность фотосинтеза и активность корневой системы [18].

Известно и возбуждающее влияние наночастиц железа на повышение энергии прорастания и всхожести семян, подтвержденное результатами исследований [19, 20, 21].

Аналогами - прототипами предлагаемого изобретения является способ обработки семян в вакуумной среде [21] с применением в растворе католита биологически активных наночастиц железа и оксида кремния [19].

Для решения задачи повышение эффективности применения представляемого способа нами совмещено их влияние под давлением в пределах 9,8-14,7 Па (1,0-1,5 кгс/м2).

Анализ доступных источников информации не выявил применения наночастиц железа Fe оптимальной дозировки [23, 24] и НЧ оксида кремния SiO2 в смеси с католитом при обработке под давлением, как способ биостимуляции прорастания клубней картофеля. При этом задачей являлось и установление времени обработки при оптимальной дозировке НЧ SiO2 в сочетании с оптимальной для НЧ Fe в растворе католита.

Таким образом, заявляемое техническое решение соответствует патентоспособности «новизна».

Целью изобретения является повышение энергии прорастания и всхожести семенного картофеля. Поставленная цель достигается тем, что согласно предлагаемому способу клубни обрабатываются под давлением 9,8-14,7 Па в эмульсии ЭХА католитом с НЧ Fe и SiO2 с рН 7-9 и редокс-потенциалом Eh=-350-450 мВ, стабилизированного аминокислотой с глицином в количестве не менее 0,001 мас. % на установке с вращающимся барабоном с частотой 10 об/мин в течении 5 мин.

При эксперименте использовали наночастицы Fe производитель ООО «Передовые порошки технологии» г. Томск и SiO2 производитель «Плазмотерм» г. Москва, ул. Тарутинская, д. 1

Для проверки результатов достижения поставленной цели в нашем эксперименте предпосевной обработке клубней семенного картофеля проращивание клубней осуществляли в вегетационной камере в течение 10-15 дней.

Использование предлагаемого способа электрохимической активации клубней картофеля позволяет исключить предпосадочное проращивание яровизацию в течение от 40-60 дней, полнее использовать генетический потенциал, заложенный в сорте путем интенсивного прорастания жизнеспособной почки в течение 10-15 дней.

Для опыта использовали

Сорт картофеля Ицил (селекционный номер 03.9.7), отобран из ботанических семян, полученных от скрещивания сортов Кондор и Фреско в лаборатории селекции картофеля ФГБНУ «Южно-Уральский научно-исследовательский институт садоводства и картофелеводства».

Режим обработки клубней картофеля представлены в табл. 1.

Для дезинфекции клубней картофеля при их подготовке к опыту обрабатывали 0,01%-ом растворе марганцово-кислого калия.

Предлагаемый нами стабилизатор демонстрирует устойчивую противомикробную и противогрибковую активность, длительную сохранность редокс-потенциала катодного водного раствора и представляет собой аминокислоту из группы полярных (гидрофильных) незаряженных аминокислот в количестве не менее 0,01 мас. %, в нашем эксперименте глицин [25].

Водный раствор католита с рН 7-9 и редокс-потенциалом - 400-500 мВ получали в эксперименте путем электролита водопроводной воды с помощью биоэлектроактиватора «Эсперо-1».

Исходные данные используемой водопроводной воды в опыте соответствовали требованиям СанПин 2.1.4.1074-01.

Результаты эксперимента представлены в таблице 2.

Подсчет энергии прорастания показал, что способ обработки картофеля под давлением 9,8-14,7 Па в течение 5 минут дает прибавку к контролю, II и III вариантам 22%, 32% и 42%, а также всех биометрических показателей почти в 2 раза.

Сильное ингибирующее прорастание показал III вариант обработки до 50%, особенно отчетливо видно подавляющий рост ростков до 21,6%, а корней до 33,9% в сравнении с I способом обработки (табл. 2).

По I варианту содержание хлорофилла (а+b) и каратиноидов превысило контроль, II и III вариантов соответственно на 7,5-37,5%, на 26,6-50% (табл. 3).

Изменение метаболизма определить по активности или изоферментному спектру ключевых ферментов - АО (антиоксиданты). Результаты опыта показали, что резкое увеличение ферментов супероксиддисмутазы (СОД) и каталазы (КАТ) в ростках картофеля в сравнении с контролем проявлялась при увеличении времени обработки на 3,9-10,1% и 5,9-100% соответственно.

В качестве биологического индикатора развития окислительного стресса растений используют продукт ПОЛ (перекисное окисление липидов) мембран - малоновый диальдегид (МДА). По современным представлениям НЧ металлов способствуют механическому разрушению мембранных структур, в результате изменения которых удваивается вероятность поступления металлов в клетки. В результатах наших исследований наблюдается, снижение МДА в I варианте обработки в сравнении с контролем, II и III способом обработки, что свидетельствует о сохранении целостности клеточных мембран и, как следствие, об успешной адаптации растений к наночастицам.

Напротив, происходило небольшое снижение фенольных соединений (ФС) в листьях и корнях, причем во всех вариантах обработках. Тенденцию к снижению ФС при воздействии можно объяснить либо низкой скоростью синтеза исследуемой группы веществ, либо слабым проявлением окислительного стресса в проростках, следовательно, не востребованностью ФС в качестве элементов АОС. По-видимому, растения в среде железосодержащих и оксида кремния НЧ в полной мере справляются с «тушением» АФК благодаря снижению содержания ФС за счет их окисления.

Использование пероксидазы - как маркера стрессового состояния позволяет более полно характеризовать защитные ходы для диагностики устойчивости к стрессовым факторам. При обработке клубней картофеля НЧ Fe 16⋅10-4 Моль и НЧ SiO2 3⋅10-3 Моль показано, что ростках увеличилась активность пероксидазы в сравнении с контролем в 2 раза. Причем с увеличением времени обработки вызывалось меньшее увеличение активности пероксидазы (табл. 4).

Приведенные данные свидетельствуют о высокой эффективности предпосадочного способа обработки клубней картофеля под давлением 9,8-14,7 Па в течение 5 минут по I варианту. Этот способ гарантирует прибавку по всем морфометрическим и морфофизиологическим показателям модели таким образом увеличит урожайность на 20-25%, а также исключит длительность предпосадочного светового проращивания - яровизацию в течение 15-20 дней и расширит применимость способа выращивания картофеля в факторостатных лабораторных условиях.

По сравнению с обработкой клубней картофеля в вакуумной среде [22] при обработке их под давлением показатели энергии прорастания были выше на 4%, количество ростков выше на 9,3%, количество корней - на 24,5%.

Литература

1. Труды Челябинского института механизации и электрификации сельского хозяйства, 1972. Вып.65. С. 52-55.

2. Анисимов Б.В., Зебрин С.Н., Логинов С.И., Кузьмичев А.А. Новый стандарт - новый уровень качества семенного картофеля. В сб.: Развитие новых технологий селекции и создание отечественного конкурентоспособного семенного фонда картофеля: матер, межд. науч-практ. конф., серия «Картофелеводство», под редакцией С.В. Жеворы. 2016. С. 131-137.

3. Картофелеводство. Сб. науч. тр.: матер, межд. науч.-практ. конф. «Методы биотехнологии в селекции и семеноводстве картофеля» / ГНУ ВНИИКХ Россельхозакадемии, М., 2014. 286 с.

4. Артемьев Н.А. Проблемы энерговоздействия на рост растений. М., изд-во ВАСХНИЛ, 1936.

5. Евреинов М.Г. Применение электричества в сельском хозяйстве. ОГИЗ - Сельхоз, 198.

6. Кефели В.И. Рост растений и природные регуляторы. Физиология растений. Т. 25. Вып. 5. М., Наука, 1978.

7. Агрономическая тетрадь. Возделывание картофеля по интенсивной технологии / Под общ. ред. Б.Ф. Хлевного. - М.: Россельхозиздат.1986. 96 с.

8. Картофелеводство: история развития и результаты научных исследований по культуре картофеля. Сб. науч. тр. / ФГБНУ ВНИИКХ, под ред. С.В. Жеворы. М., 2015. 449 с.

9. Изаков В.Я., Рыбин И.А. Биологические явления у животных и растений. Основы электробиологии. Свердловск, УГУ, 1973.

10. Воронцов Д.С.Электричество в живом организме. «Знание», 1961.

11. Гунар И.И. Проблема раздражимости растений и ее значение для дальнейшего развития физиология растений. Доклад на научной конференции академии им. Тимирязева, 9 декабря 1952. М., 1953.

12. Кочан А.Б. Электрофизиология. М., Высшая школа, 1969.

13. Рубин Б. Курс физиологии растений. М., Высшая школа, 1976.

14. Патент RU №2234945. Опубликовано 27.08.2004. Бюл. №14.

15. Виноградова Д.Л., Малышев Р.А., Фолманис Г.Э. Экономические аспекты применения нанотехнологий в земледелии / Под. Общ. ред. Г.В. Павлова - М.: Исследовательский центр проблем качеств подготовки специалистов. 2005. С. 8-34.

16. Коваленко Л.В., Фолманис Г.Э. Биологически активные нанопорошки железа. М.: Наука, 2006. 124 с.

17. Ma, J.F. et al. (2004) Characterization of Si uptake system and molecular mapping of Si transporter gene in rice. Plant Physiol. 136, 3284-3289.

18. Wang S.Y., Galletta G.J. Foliar application of potassium silicate induces metabolic changes in strawberry plants. Journal of Plant Nutrition. Vol. 21, Iss. 1, 1998.

19. Патент RU №2635103. Опубликовано 09.11.2017. Бюл. №31 (прототип)

20. Патент RU №2623471. Опубликовано 26.06.2017. Бюл. №18

21. Патент RU №2627556. Опубликовано 08.06. 2017. Бюл. №22 (прототип)

22. Заявка на изобретение RU №: 2018127963 «Способ предпосадочной обработки клубней семенного картофеля» авторы Мушинский А.А., Сизова Е.А. и др., Зарегистрировано 01 августа 2018.

23. Heather A. Currie, Carole С.Perry. Silica in plants: Biological, biochemical and chemical studies// Ann. Bot. 2007. December. 100(7). P. 1383-1389.

24. Матыченков B.B., Бочарникова E.A., Кособрюхов A.A., Биль К.Я. О подвижных формах кремния в растениях // ДАН РАН. 2008. Т. 418. №2. С. 279-281.

25. Патент на изобретение RU №2234945, 2004.

Похожие патенты RU2731990C2

название год авторы номер документа
СПОСОБ ПРЕДПОСАДОЧНОЙ ОБРАБОТКИ КЛУБНЕЙ СЕМЕННОГО КАРТОФЕЛЯ 2018
  • Мушинский Александр Алексеевич
  • Сизова Елена Анатольевна
  • Аминова Евгения Владимировна
  • Рогачев Борис Георгиевич
  • Пашинина Татьяна Александровна
  • Докина Нина Николаевна
  • Кизаев Михаил Анатольевич
  • Фролов Дмитрий Викторович
RU2690937C1
СПОСОБ ВОЗДЕЛЫВАНИЯ КАРТОФЕЛЯ ПО ИНТЕНСИВНОЙ ТЕХНОЛОГИИ НА ОРОШАЕМЫХ ЗЕМЛЯХ СТЕПНОЙ ЗОНЫ ЮЖНОГО УРАЛА 2019
  • Аминова Евгения Владимировна
  • Мушинский Александр Алексеевич
  • Сизова Елена Анатольевна
  • Рогачев Борис Георгиевич
  • Докина Нина Николаевна
  • Кизаев Михаил Анатольевич
  • Фролов Дмитрий Викторович
RU2729128C1
Способ возделывания картофеля по интенсивной технологии с применением ультрадисперсных частиц в орошаемых условиях степной зоны Оренбургской области 2023
  • Мушинский Александр Алексеевич
  • Лебедев Святослав Валерьевич
  • Саудабаева Алия Жонысовна
  • Васильева Татьяна Николаевна
  • Рахматуллин Шамиль Гафиуллович
RU2820119C1
СПОСОБ ПОДГОТОВКИ СЕМЕННОГО КАРТОФЕЛЯ К ПОСАДКЕ 2022
  • Борычев Сергей Николаевич
  • Назарова Анна Анатольевна
  • Колошеин Дмитрий Владимирович
  • Успенский Иван Алексеевич
  • Голиков Алексей Анатольевич
  • Власов Герман Сергеевич
  • Матюшкина Вера Дмитриевна
  • Клёпова Светлана Олеговна
RU2790577C1
СПОСОБ ПРЕДПОСЕВНОЙ ОДНОРАЗОВОЙ ОБРАБОТКИ СЕМЯН ГОРОХА PISUM SATIVUM L. 2019
  • Галактионова Людмила Вячеславовна
  • Воскобулова Надежда Ивановна
  • Терехова Надежда Алексеевна
  • Лебедев Святослав Валерьевич
  • Сангалиева Рада Сергеевна
  • Фролов Дмитрий Викторович
  • Докина Нина Николаевна
  • Рогачев Борис Георгиевич
RU2697277C1
СПОСОБ ПОЛУЧЕНИЯ СОЛОДА 2019
  • Муслюмова Дина Марсельевна
  • Курилкина Марина Яковлевна
  • Лебедев Святослав Валерьевич
  • Докина Нина Николаевна
  • Кизаев Михаил Анатольевич
  • Фролов Дмитрий Викторович
  • Рогачев Борис Георгиевич
RU2731981C1
Способ предпосевной обработки семян сельскохозяйственных растений 2021
  • Гусев Александр Анатольевич
  • Васюкова Инна Анатольевна
  • Захарова Ольга Владимировна
  • Кузнецов Денис Валерьевич
  • Чурилов Геннадий Иванович
RU2774420C1
СПОСОБ СНИЖЕНИЯ АККУМУЛЯЦИИ ТЯЖЕЛЫХ МЕТАЛЛОВ ЯРОВОЙ ПШЕНИЦЕЙ В УСЛОВИЯХ ТЕХНОГЕННО ЗАГРЯЗНЕННОГО АГРОЦЕНОЗА 2020
  • Галактионова Людмила Вячеславовна
  • Терехова Надежда Алексеевна
  • Лебедев Святослав Валерьевич
  • Ермаков Александр Александрович
  • Вершинина Ирина Александровна
  • Душин Алексей Владимирович
  • Юрак Вера Васильевна
  • Рогачев Борис Георгиевич
RU2763191C1
СПОСОБ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН ЯРОВОЙ СИЛЬНОЙ ПШЕНИЦЫ 2018
  • Мирошников Сергей Александрович
  • Лебедев Святослав Валерьевич
  • Сизова Елена Анатольевна
  • Яушева Елена Владимировна
  • Докина Нина Николаевна
  • Рогачев Борис Георгиевич
  • Сандакова Галина Николаевна
  • Фролов Дмитрий Викторович
  • Кизаев Михаил Анатольевич
  • Гавриш Ирина Александровна
RU2700616C1
АЭРОГИДРОПОННЫЙ СПОСОБ ВЫРАЩИВАНИЯ ЗЕЛЕНЫХ КОРМОВ 2015
  • Мирошников Сергей Александрович
  • Сизова Елена Анатольевна
  • Кизаев Михаил Анатольевич
  • Дерябина Татьяна Дмитриевна
  • Докина Нина Николаевна
  • Рогачев Борис Георгиевич
  • Павлов Лев Никитович
RU2614778C1

Реферат патента 2020 года СПОСОБ ПРЕДПОСАДОЧНОЙ ОБРАБОТКИ КЛУБНЕЙ КАРТОФЕЛЯ

Изобретение относится к области сельского хозяйства. Способ включает обработку клубней стабилизированным электрохимически активированным католитом с рН 7-9 и редокс-потенциалом Eh=-400÷-500 мВ, стабилизированным аминокислотой глицином в концентрации 0,01 мас. %, и содержащим наночастицы железа Fe размером 80 нм и оксида кремния SiO2 размером 25 нм в весовом соотношении 1:3. Концентрация в католите НЧ Fe – 16⋅10-4 моль и НЧ SiO2 – 6⋅10-3 моль под давлением 9,8-14,7 Па на установке с вращающимся барабаном с частотой вращения барабана 10 об/мин, время обработки 5 мин. Способ обеспечивает повышение энергии прорастания и всхожести. 4 табл.

Формула изобретения RU 2 731 990 C2

Способ предпосадочной обработки клубней картофеля, включающий обработку клубней стабилизированным электрохимически активированным католитом с рН 7-9 и редокс-потенциалом Eh=-400÷-500 мВ, стабилизированным аминокислотой глицином в концентрации 0,01 мас.%, и содержащим наночастицы железа Fe размером 80 нм и оксида кремния SiO2 размером 25 нм в весовом соотношении 1:3 с концентрацией в католите НЧ Fe 16⋅10-4 моль и НЧ SiO2 – 6⋅10-3 моль под давлением 9,8-14,7 Па на установке с вращающимся барабаном с частотой вращения барабана 10 об/мин, время обработки 5 мин.

Документы, цитированные в отчете о поиске Патент 2020 года RU2731990C2

СПОСОБ ПРЕДПОСАДОЧНОЙ ОБРАБОТКИ КЛУБНЕЙ КАРТОФЕЛЯ 2013
  • Сироткина Екатерина Егоровна
  • Пуль Иван Владимирович
  • Маляренко Александр Михайлович
RU2545667C2
СПОСОБ ПОВЫШЕНИЯ УРОЖАЙНОСТИ И КАЧЕСТВА КЛУБНЕЙ КАРТОФЕЛЯ 2011
  • Маринкина Галина Александровна
  • Томилова Оксана Григорьевна
  • Лях Анатолий Афанасьевич
RU2477594C1
СПОСОБ ПРЕДПОСАДОЧНОЙ ОБРАБОТКИ КЛУБНЕЙ СЕМЕННОГО КАРТОФЕЛЯ 2003
  • Мелихов В.В.
  • Астахов А.А.
  • Ломтев А.В.
  • Салдаев А.М.
RU2236104C1
СПОСОБ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН 2014
  • Мирошников Сергей Александрович
  • Сизова Елена Анатольевна
  • Дерябин Дмитрий Геннадьевич
  • Дерябина Татьяна Дмитриевна
  • Рогачёв Борис Георгиевич
RU2582499C1
АЭРОГИДРОПОННЫЙ СПОСОБ ВЫРАЩИВАНИЯ ЗЕЛЕНЫХ КОРМОВ 2015
  • Мирошников Сергей Александрович
  • Сизова Елена Анатольевна
  • Кизаев Михаил Анатольевич
  • Дерябина Татьяна Дмитриевна
  • Докина Нина Николаевна
  • Рогачев Борис Георгиевич
  • Павлов Лев Никитович
RU2614778C1

RU 2 731 990 C2

Авторы

Мушинский Александр Алексеевич

Аминова Евгения Владимировна

Пашинина Татьяна Александровна

Сизова Елена Анатольевна

Холодилина Татьяна Николаевна

Рогачев Борис Георгиевич

Докина Нина Николаевна

Кизаев Михаил Анатольевич

Фролов Дмитрий Викторович

Даты

2020-09-09Публикация

2018-08-28Подача