Реактор заземляющий дугогасящий с немагнитными зазорами РДМК, РДСК с конденсаторным регулированием Российский патент 2020 года по МПК H02H9/08 H01F27/28 H01F29/14 

Описание патента на изобретение RU2734394C1

Изобретение относится к электротехнике и, в частности, электрооборудованию компенсации емкостных токов замыкания в электрических сетях среднего напряжения.

Защита электрических распределительных сетей 6-35 кВ посредством компенсации емкостных токов замыкания на землю осуществляется устройствами дугогашения на основе линейных управляемых катушек - дугогасящих реакторов (ДГР). Главными требованиями для оборудования данного класса являются управляемость, т.е. возможность регулирования индуктивного сопротивления и неизменность индуктивного сопротивления от приложенного напряжения для любого, ранее фиксированного его значения. Первый параметр - кратность регулирования индуктивного сопротивления (рабочего тока) должна быть не меньше 10 в связи с возможными значительными изменениями емкостного тока замыкания вследствие изменения конфигурации сети. Второй параметр определяется линейностью вольтамперной характеристики катушки, которая не должна иметь отклонение выше 1% при номинальном значении фазного напряжения сети [1]. Описание касается однофазных ДГР, подключаемых к нейтрали электрической сети или искусственно созданной ее нейтрали посредством специального трансформаторного устройства, обладающего малым сопротивлением токам нулевой последовательности [2].

Целью изобретения является повышение эксплуатационных характеристик дугогасящего реактора - линейности вольтамперных характеристик при повышенной кратности регулирования рабочего тока для обеспечения точности компенсации тока замыкания на землю в распределительных сетях, снижения уровня высших гармонических составляющих, потерь в реакторе и повышение надежности.

Известны дугогасящие реакторы с плавным регулированием рабочего тока изменением немагнитного зазора, в которых, с целью повышения линейности вольтамперных характеристик, снижения потерь в активной части, в отличие от имеющих широкое распространение ДГР плунжерного типа РДМР, РЗДПОМ, применено разделение регулируемого воздушного зазора стержня, на котором располагаются рабочие обмотки реактора, на две части [3, 4]. Несомненным достоинством аппаратов приведенной конструкции являются пониженные потери в активной части, в том числе, и за счет меньшего суммарного зазора в сердечнике по сравнению с реакторами с одним регулируемым зазором.

В дугогасящих реакторах регулированием рабочего тока изменением магнитного состояния частей магнитопровода посредством их подмагничивания, взятые в качестве прототипа, с целью повышения линейности вольтамперных характеристик, включают немагнитные зазоры, распределенные по длине стержня, на которых располагаются обмотки реактора.

Частые отказы исполнительного механизма (заклинивания сердечника, отказ конечных выключателей), повышенные потери в области максимальных токов плунжерных ДГР и малая кратность регулирования рабочего тока, повышенные потери в активной части, в том числе в нормальном режиме работы электрической сети, обусловленные постоянным потреблением энергии катушкой подмагничивания реакторов типа, снижают эффективность эксплуатации систем компенсации и ограничивают в применении указанные реакторы в электросетевом комплексе.

Имеются в эксплуатации ДГР ступенчатого регулирования индуктивного тока, взятые в качестве второго прототипа, конструктивно выполненные в двухстержневом исполнении серий ЗРОМ, РЗДСОМ. Обмотки реакторов выполнены на стержнях, имеющих немагнитные зазоры. Основные недостатки реакторов данного типа - малая кратность регулирования рабочего тока и большая разница токов между смежными ступенями переключателя ответвлений рабочей обмотки, а также невозможность организации автоматического регулирования тока компенсации.

Принцип регулирования тока дугогасящего аппарата посредством подключения к его вторичной обмотке конденсаторной установки регулируемой мощности [5], рассматриваемого в качестве основного прототипа, имеет, кроме преимуществ, выраженных достаточно малым временем настройки контура нулевой последовательности, обусловленного быстротой коммутации электромеханических реле и особенностями алгоритма управления ими в нормальном режиме работы сети, и недостатки, свойственные только этому виду ДГР. Применительно к дугогасящим реакторам с конденсаторным регулированием РДСК и РДМК и их модификаций, эксплуатируемых в электрических сетях России, кроме недостатков как, значительные токи вторичных обмоток, достигающих единицы кА, потребность в дорогостоящих коммутационных аппаратах для управления конденсаторами, относятся: выраженная нелинейность вольтамперных характеристик в верхней части, зависящая от степени загрузки вторичной обмотки; слабая электромагнитная связь между первичной и вторичной обмотками; повышенное (до величины фазного) напряжение между указанными обмотками в режимах однофазных замыканий на землю.

Известно, что дугогасящие реакторы однофазного исполнения с распределенными зазорами на стержнях магнитопровода выпускаются двух видов - броневой, с центральным стержнем, и двухстержневой, с зазорами, на которых располагаются обмотки. Причем, первичная и вторичная обмотки имеют одинаковую мощность - этим определяется возможность реализации требуемой руководящими документами [1] величина кратности регулирования тока ДГР. В упомянутых реакторах вторичная обмотка располагается поверх первичной обмотки, а между указанными обмотками устанавливается изоляционный слой с каналами для обеспечения электрической изоляции между обмотками и отвода тепла от них. Отраженные в требованиях [1] по обеспечению точности настройки КНП электрической сети дугогасящими реакторами во всем диапазоне кратности регулирования в режимах однофазного замыкания на землю по установленному значению расстройки в нормальном режиме работы сети, возможно только при условии обеспечения линейности вольтамперных характеристик ДГР с отклонением не выше значения, указанного в [1, 6], при изменениях его тока от минимального до максимального значения.

Однако, при изменении тока ДГР в процессе настройки на резонансный режим компенсации, меняется соотношение между токами первичной и вторичной обмоток в диапазоне:

,

где IL0, ILmax, ICvar, токи ДГР для режима настройки, максимальный ток реактора, а также емкостный ток вторичной обмотки, соответствующий установленной настройке, kT - соотношение между напряжениями первичной и вторичной обмоток. Коэффициент трансформации kT не является фиксированной величиной и зависит от нагрузки во вторичной обмотке. Причем, чем хуже электромагнитная связь между обмотками, тем более выражено отклонение kT от идеальной. При такой компоновке обмоток реактора меняется распределение магнитного потока в сердечнике, в окне магнитопровода, в обмотках. Последнее приводит к повышенным потерям в стали, особенно в вкладышах и приводит к их перегреву.

С целью достижения указанных недостатков предлагается вторичную обмотку установить между частями первичной обмотки. Это позволит повысить электромагнитную связь между обмотками и снизить величину напряжения короткого замыкания реактора. Лучший результат можно получить чередованием частей первичной обмотки, соединенных последовательно и параллельно соединенным частям вторичной обмотки. При этом регулируемая нагрузка (дополнительный источник) подключается к выводам вторичной обмотки. С целью улучшения характеристик реактора посредством выравнивания э.д.с. витков, вторичную обмотку, расположенную между частями (внутри) первичной обмотки, выполнить из проводника ленточной формы шириной, равной ширине намотки обмоток реактора. Расположение вторичной обмотки между частями рабочей обмотки уменьшает рабочее напряжение меду этими обмотками в два раза, с величины фазного, до 0,5 его значения. Положительными факторами кроме указанного выше обстоятельства, являются: применение межобмоточной изоляции на меньшее напряжение и меньшей толщины изолирующих и теплоотводящих каналов; снижение активных потерь во вторичной обмотке за счет снижения диаметра обмотки на величину

,

где , , и - величина тока, сопротивление вторичной обмотки, а также диаметр этой обмотки при его наружном и внутреннем расположении.

Повысить электромагнитную связь между обмотками и отказаться от разделения первичной и вторичной обмоток по расположению относительно стержня магнитопровода возможно применением в качестве обмоток многожильного изолированного кабеля (литцендрата). В этом случае часть витков упомянутого кабеля, соединяется последовательно согласованно и образует первичную обмотку, а другая часть, соединенная параллельно - вторичную обмотку. При этом кабель может иметь жилы разного сечения, например, одной большого сечения для вторичной обмотки и несколько жил меньшего для первичной обмотки.

Таким образом, из вышеизложенного следует, что предложенный дугогасящий реактор для компенсации емкостных токов замыкания на землю при его реализации обеспечивает достижение технического результата, заключающегося в точности настройки контура нулевой последовательности сети, повышении эффективности эксплуатации в целом за счет уменьшения потерь, обусловленных снижением уровня высших гармонических составляющих и активных потерь в обмотке, повышении надежности в эксплуатации.

На фиг. 1-4 активные части дугогасящих реакторов бронестержневой (фиг. 1, фиг. 3) и стержневой (фиг.2, фиг.4) конструкций. Первичные обмотки выведены к клеммам “А”» и “X”, а вторичные, к которым подключаются нагрузочные элементы СН и RH. На фигурах вторичная обмотка, установленная между частями первичной обмотки, изолирована от частей первично изолирующими каналами. При таком расположении электромагнитная связь между обмотками значительно повышается. В реакторах стержневой конструкции рабочие - первичная и вторичная обмотки разделены на две одинаковые части. Части первичной “А1.1”-“X1.1” и “А1.2”-“X1.2”, а также вторичной “а1.1”-“х1.1” и “а1.2”-“х1.2” могут иметь как последовательное, так и параллельное соединение. Важно учесть, что при параллельном соединении частей первичной обмотки общая индуктивность в два раза меньше индуктивности части катушки, намотанной на одной из стержней, а при последовательном - индуктивности складываются и образуют катушку в два раза большим индуктивным сопротивлением.

Управления компенсацией емкостных токов в режимах однофазных замыканий на землю посредством регулируемых конденсаторных установок затруднено и часто невозможно из-за перегрузок коммутационных аппаратов по току и напряжению в моменты переключений и создаваемых ими помех. В тоже время, эффективность компенсации определяется и способностью системы компенсации емкостных токов создать условия для самопогасания электрической дуги. В связи с незначительностью изменения емкостных токов в режимах замыкания на землю нет необходимости в регулировании тока в широком диапазоне. В данном случае предложено регулировать индуктивный ток посредством частичного подмагничивания сердечника - изменения магнитного его состояния. Для этого в верхней и (или) нижней части магнитопровода (фиг. 3, фиг. 4) устанавливаются катушки подмагничивания, рассчитанные на регулирование тока реактора на (15-20)%. Катушки питаются от управляемого автоматикой ДГР источника постоянного напряжения.

Существенного улучшения линейности вольтамперных характеристик, при правильном подборе величины индукции в сердечнике, можно добиться использованием в качестве намоточного провода изолированного многожильного кабеля, которым, при соответствующем соединении жил (фиг. 5), реализуются гальванически развязанные катушки с высокой электромагнитной связью разного уровня напряжения.

СПИСОК ЛИТЕРАТУРЫ

1. Реакторы заземляющие дугогасящие 6-35 кВ. Общие технические требования. Стандарт организации ПАО «Россети» СТО 34.01-3.2-008-2017 / М.: ПАО «Россети». - 2017. - 22 с.

2. Р. Вильгейм, М. Уотерс. Заземление нейтрали в высоковольтных системах / М.: ГЭИ. - 1959. - 416 с.

3. Пат. на изобретение № 2663202 РФ, МПК H01F 29/10, СПК H01F 29/10. Дугогасящий реактор с регулируемыми зазорами / М.И. Петров; патентообладатель Общество с ограниченной ответственностью НИР «Энерго» (ООО НИР «Энерго»). - №2016152425; заявл. 28.12.2016; опубл. 02.08.2018, Бюл. № 22. - 7 с.

4. Пат. на изобретение № 2663538 РФ, МПК H01F 29/14, СПК H01F 29/14. Дугогасящий реактор с регулируемыми распределенными зазорами РДМРР / М.И. Петров; Е.В. Маршутин, Е.В. Архипов, И.Н. Степанов, А.А. Кузьмин, патентообладатель Общество с ограниченной ответственностью НИР «Энерго» (ООО НИР «Энерго»). - №2016152430; заявл. 28.12.2016; опубл. 07.08.2018, Бюл. № 22. - 8 с.

5. Соловьёв, И.В. Дугогасящие реакторы с конденсаторным регулированием индуктивности / А.В. Булычев, И.В. Соловьёв, В.Н. Козлов, Н.О. Салмин // Релейная защита и автоматизация, 2015. - № 04 (21). - С. 56-59.

6. Брыкин В. Системы компенсации емкостного тока замыкания на землю. Соответствие требованиям нормативных документов /В. Брыкин, Н. Дроздов, Ю. Корчмарик // Новости Электро Техники. - №4 (112). - 2018. - с. 38-41.

7. Забудский Е.И. Совмещенные регулируемые электромагнитные регуляторы / Монография. М.: ФГОУ ВПО МГАУ, Энергоатомиздат. - 2003. - 436 с.

Похожие патенты RU2734394C1

название год авторы номер документа
Способ настройки дугогасящего реактора и устройство для его реализации 2020
  • Базаррагчаа Алтандуулга
  • Баязитов Ильдар Равильевич
  • Медведев Вячеслав Германович
  • Петрова Людмила Анатольевна
  • Петров Евгений Михайлович
  • Петров Михаил Иванович
RU2754360C1
СПОСОБ АВТОМАТИЧЕСКОЙ НАСТРОЙКИ ДУГОГАСЯЩЕГО РЕАКТОРА 2012
  • Долгополов Андрей Геннадьевич
RU2508584C1
УСТРОЙСТВО АВТОМАТИЧЕСКОЙ КОМПЕНСАЦИИ ЕМКОСТНЫХ ТОКОВ С СИММЕТРИРОВАНИЕМ ФАЗНЫХ НАПРЯЖЕНИЙ СЕТИ 2018
  • Петров Михаил Иванович
  • Баязитов Ильдар Равильевич
  • Нигметзянов Вильдан Савилевич
  • Петров Евгений Михайлович
  • Медведев Вячеслав Германович
RU2719632C1
Агрегат дугогасящий для компенсации емкостных токов в сетях среднего напряжения 2015
  • Петров Михаил Иванович
  • Маршутин Евгений Валериевич
  • Петров Евгений Михайлович
RU2611061C1
Способ и устройство измерения емкостного тока электрической сети с плавнорегулируемым дугогасящим реактором 2019
  • Кузьмин Алексей Александрович
  • Медведев Вячеслав Германович
  • Нигметзянов Вильдан Савилевич
  • Петров Михаил Иванович
  • Сентябрев Андрей Викторович
RU2723898C1
Дугогасящее устройство для компенсации емкостного тока однофазного замыкания на землю 1988
  • Калин Николай Федорович
  • Злобин Юрий Иванович
SU1644291A1
УСТРОЙСТВО АВТОМАТИЧЕСКОЙ НАСТРОЙКИ ДУГОГАСЯЩЕГО РЕАКТОРА 2009
  • Ильин Владимир Федорович
  • Петров Михаил Иванович
  • Соловьёв Игорь Валерьевич
RU2404501C1
СПОСОБ АВТОМАТИЧЕСКОЙ НАСТРОЙКИ ДУГОГАСЯЩЕГО РЕАКТОРА 2002
  • Долгополов А.Г.
RU2222857C1
СПОСОБ НАСТРОЙКИ КОМПЕНСАЦИИ ЕМКОСТНЫХ ТОКОВ ЗАМЫКАНИЯ НА ЗЕМЛЮ (ВАРИАНТЫ) 2009
  • Ильин Владимир Федорович
  • Петров Михаил Иванович
  • Соловьёв Игорь Валерьевич
RU2402132C1
СПОСОБ АВТОМАТИЧЕСКОЙ НАСТРОЙКИ ДУГОГАСЯЩЕГО РЕАКТОРА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Брянцев А.М.
  • Долгополов А.Г.
RU2130677C1

Иллюстрации к изобретению RU 2 734 394 C1

Реферат патента 2020 года Реактор заземляющий дугогасящий с немагнитными зазорами РДМК, РДСК с конденсаторным регулированием

Изобретение относится к электротехнике, к силовому оборудованию компенсации емкостных токов замыкания на землю в электрических сетях среднего напряжения. Технический результат заключается в повышении компенсации емкостных токов, точности настройки контура нулевой последовательности сети, надежности и энергоэффективности, в снижении уровня высших гармонических составляющих в токе замыкания на землю. Реактор дугогасящий заземляющий с конденсаторным регулированием рабочего тока содержит обмотки, расположенные на стержнях стержневого или бронестержневого магнитопровода с немагнитными зазорами. Он снабжен регулируемыми нагрузочными элементами Сн и Rн, соединенными параллельно и подключенными к вторичной обмотке реактора. Его первичная обмотка подключена к нейтрали электрической сети, а вторичная обмотка установлена между частями первичной обмотки. 6 з.п. ф-лы, 7 ил.

Формула изобретения RU 2 734 394 C1

1. Реактор дугогасящий заземляющий с конденсаторным регулированием рабочего тока, обмотки которого расположены на стержнях стержневого или бронестержневого магнитопровода с немагнитными зазорами, отличающийся тем, что он снабжен регулируемыми нагрузочными элементами Сн и Rн, соединенными параллельно и подключенными к вторичной обмотке реактора, а его первичная обмотка подключена к нейтрали электрической сети, а вторичная обмотка установлена между частями первичной обмотки.

2. Реактор по п. 1, отличающийся тем, что он имеет несколько вторичных обмоток.

3. Реактор по п. 1, отличающийся тем, что вторичная обмотка выполнена из ленточного проводника шириной, равной высоте обмоток реактора.

4. Реактор по п. 1, отличающиеся тем, что части первичной обмотки соединены последовательно и чередуются параллельно соединенными частями вторичной обмотки.

5. Реактор по п. 1, отличающийся тем, что первичная и вторичная обмотки выполнены многожильным кабелем (литцендратом), части жил которого, соединенные последовательно согласованно, образует первичную обмотку, а другие части жил, соединенные параллельно согласованно – вторичную обмотку.

6. Реактор по п. 1, отличающийся тем, что первичной обмоткой являются последовательно соединенные жилы кабеля меньшего сечения, а вторичной – оболочка кабеля или центральная жила сечением, равным или меньшим суммарного сечения жил, образующих первичную обмотку.

7. Реактор по п. 1, отличающийся тем, что в окнах в верхнем и/или нижнем ярем установлены дополнительные обмотки подмагничивания магнитопровода, включенные последовательно встречно друг с другом.

Документы, цитированные в отчете о поиске Патент 2020 года RU2734394C1

ИНДУКТИВНОЕ УСТРОЙСТВО 2006
  • Шютте Торстен
  • Винтер Клаус
RU2410814C2
Дугогасящий реактор с регулируемыми распределенными зазорами РДМРР 2016
  • Петров Михаил Иванович
  • Маршрутин Евгений Валерьевич
  • Архипов Евгений Витальевич
  • Степанов Иван Николаевич
  • Кузьмин Алексей Александрович
RU2663538C2
Импульсный трансформатор 1979
  • Вдовин Сергей Саймойлович
  • Шамрай Юрий Юрьевич
SU828226A1
МИКРОПОРИСТЫЙ СЕПАРАТОР ДЛЯ ХИМИЧЕСКИХ ИСТОЧНИКОВ ТОКА И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 0
SU166393A1
Способ автоматической компенсации тока однофазного замыкания на землю в сети с дугогасящим реактором в нейтрали 2016
  • Ильин Владимир Федорович
  • Булычев Александр Витальевич
  • Козлов Владимир Николаевич
  • Матвеев Николай Владиславович
RU2655670C2
СПОСОБ НАСТРОЙКИ РЕЗОНАНСНОГО ЗАЗЕМЛЕНИЯ НЕЙТРАЛИ ТРЕХФАЗНЫХ ЭЛЕКТРИЧЕСКИХ СЕТЕЙ ПЕРЕМЕННОГО ТОКА 2007
  • Шпиганович Александр Николаевич
  • Шпиганович Алла Александровна
  • Захаров Кирилл Дмитриевич
  • Зацепина Виолетта Иосифовна
  • Зацепин Евгений Петрович
  • Шилов Илья Геннадиевич
RU2330366C1
Устройство для плавнорегулируемой компенсации емкостных токов 1990
  • Злобин Юрий Иванович
SU1718324A1
CN 1591711 А, 09.03.2005.

RU 2 734 394 C1

Авторы

Баязитов Ильдар Равильевич

Кузьмин Алексей Александрович

Медведев Вячеслав Германович

Петров Евгений Михайлович

Петров Михаил Иванович

Даты

2020-10-15Публикация

2020-01-31Подача