Способ получения многослойного покрытия для режущего инструмента Российский патент 2020 года по МПК C23C14/06 C23C14/24 B23B27/14 

Описание патента на изобретение RU2735478C1

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Известен способ повышения стойкости режущего инструмента (РИ), при котором на его поверхность вакуумно-плазменным методом наносят износостойкое покрытие (ИП) из нитрида титана и ниобия (NbTiN) (см. патент на изобретение RU 2640693 С1). К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе покрытия имеют относительно низкую твердость и адгезионную прочность. В результате этого покрытие в большей мере подвергается износу, в нем быстро зарождаются и распространяются трещины, приводящие к разрушению покрытия, что снижает стойкость РИ с покрытием.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ нанесения многослойного покрытия, состоящего из нижнего слоя нитрида ниобия NbN и верхнего слоя нитрида титана, алюминия и ниобия TiAlNbN (см. патент на изобретение RU 2622532 С1), принятый за прототип.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного режущего инструмента с покрытием, принятого за прототип, относится то, что в известном способе многослойное покрытие обладает недостаточной твердостью и величиной сжимающих остаточных напряжений. В результате покрытие плохо сопротивляется процессам износа и разрушения и быстро разрушается при резании.

Повышение в последнее время стоимости металлорежущего инструмента и ужесточение требований к точности обрабатываемых деталей сделало еще более актуальной проблему повышения стойкости РИ. Одним из путей повышения стойкости и, как следствие, работоспособности РИ с покрытием является нанесение покрытий многослойного типа со слоями с различными физико-механическими свойствами. Наличие в покрытии верхнего слоя, обладающего высокой твердостью, способствует снижению интенсивности износа РИ с многослойным покрытием. Для повышения прочности сцепления покрытия с инструментальной основой оно должно иметь в своем составе нижний слой с повышенными адгезионными свойствами. Кроме того, повышение уровня сжимающих остаточных напряжений и создание микрослоистости в верхнем слое покрытия приводит к увеличению его твердости и трещиностойкости и, как следствие, работоспособности РИ с покрытием.

Технический результат - повышение работоспособности режущего инструмента с многослойным покрытием.

Указанный технический результат при осуществлении изобретения достигается тем, что наносят нижний слой из нитрида ниобия и верхний из нитрида соединения ниобия, титана, циркония и алюминия при их соотношении, мас. %: ниобий 43,7, титан 16,5, цирконий 38,0, алюминий 1,8, а нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый из которых выполняют из ниобия, второй - из сплава ниобия, титана и алюминия и располагают противоположно первому, а третий изготавливают из циркония и располагают между ними, причем нижний слой наносят с использованием первого катода, а верхний слой - с использованием всех трех катодов.

Такая структура покрытия (рис. 1, а) позволяет получить высокую прочность сцепления с основой из-за наличия в покрытии нижнего слоя нитрида ниобия, обладающего высокой адгезией с инструментальной основой. При этом верхний слой обладает высокой твердостью из-за дополнительного легирования материала слоя и наличию в их структуре микрослоистости, получаемой при нанесении покрытий с использованием предлагаемой схемы расположения катодов. Данная схема расположения катодов позволяет получить при осаждении верхнего слоя многослойного покрытия (рис. 1, а) наибольшее количество чередующихся микрослоев различного химического состава. При реализации данной схемы расположения катодов за один оборот поворотного устройства с расположенными на нем пластинами режущего инструмента происходит последовательное осаждение микрослоев следующего состава: NbN, NbTiAlN, NbTiAlZrN, NbZrN (рис. 1, б). Полученные микрослои обладают наибольшей твердостью из-за реализации механизмов твердорастворного упрочнения.

Сущность изобретения заключается в следующем. В покрытии при резании происходят процессы трещинообразования, приводящие к его разрушению. В этих условиях покрытие должно иметь слоистую структуру для торможения трещин. Нижний слой покрытия должен обладать высокой адгезией с инструментальным материалом. Слои покрытия должны иметь высокие остаточные сжимающие напряжения и обладать высокой твердостью для повышения износо- и трещиностойкости. При этом слои многослойного покрытия должны иметь высокую прочность связи между собой, что обеспечивается их высоким сродством друг с другом из-за наличия общих элементов.

Пластины с покрытиями, полученные с отклонениями от указанной технологии получения, показали более низкие результаты.

Для экспериментальной проверки заявленного способа было нанесено покрытие-прототип, а также двухслойное покрытие по предлагаемому способу.

Нанесение предлагаемого покрытия осуществляется следующим образом. Твердосплавные пластины МК8 (размером 4,7×12×12 мм) промывают в ультразвуковой ванне, протирают ацетоном, спиртом и устанавливают на поворотном устройстве в вакуумной камере установки «Булат-6», снабженной тремя катодами, расположенными горизонтально в одной плоскости. При нанесении покрытия используют первый катод, изготовленный из ниобия, второй - из сплава ниобия, титана и алюминия марки ВН7 (хим. состав, мас. %: ниобий - 53, титан - 42, алюминий - 5) и располагают противоположно первому, а третий изготавливают из циркония и располагают между ними.

Камеру откачивают до давления 6,65⋅10-3 Па, включают поворотное устройство с твердосплавными пластинами, подают на него отрицательное напряжение 1,1 кВ, включают третий катод и при токе дуги 100 А производят ионную очистку и нагрев пластин до температуры 560-580°С. Ток фокусирующей катушки 0,4 А. Затем при отрицательном напряжении 160 В, токе катушек 0,3 А и подаче реакционного газа - азота включают первый катод и осаждают нижний слой покрытия NbN толщиной 4,0 мкм. Верхний слой покрытия NbTiZrAlN толщиной 2,0 мкм наносят с использованием всех трех катодов при отрицательном напряжении 160 В, токе катушек 0,3 А и подаче реакционного газа азота. Затем отключают испарители, подачу реакционного газа, напряжение и вращение поворотного устройства. Через 15-20 мин камеру открывают и извлекают инструмент с покрытием.

Микротвердость покрытий определяли на микротвердомере «ПМТ-3» под нагрузкой 100 г. Остаточные напряжения определяли на рентгеновском дифрактометре «ДРОН-ЗМ» с использованием фильтрованного СuКα-излучения. Прочность адгезии покрытия с инструментальной основой оценивали методом вдавливания алмазного конического индентора (конус Роквелла) с использованием твердомера ТК-2М при нагрузке 1000 Н. Прочность сцепления определяли по коэффициенту отслоения, равному отношению площади отслоения покрытия вокруг отпечатка от индентора к площади отпечатка.

Стойкостные испытания режущего инструмента проводили при продольном точении заготовок из стали ЗОХГСА на токарном станке 16К20. Режимы резания: скорость резания V=160 м/мин, подача S=0,3 мм/об, глубина резания t=1,0 мм, обработка производилась без применения СОЖ. Испытывали твердосплавные пластины марки МК8, обработанные по известному и предлагаемому способам. Критерием износа служила фаска износа по задней поверхности шириной 0,4 мм.

Как видно из приведенных в таблице 1 данных, стойкость пластин, с покрытиями, нанесенными по предлагаемому способу, выше стойкости пластин с покрытием, нанесенным по способу-прототипу в 1,4 раза.

Похожие патенты RU2735478C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2015
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сагитов Дамир Ильдарович
RU2622530C1
Способ получения многослойного покрытия для режущего инструмента 2023
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Долженко Яна Артуровна
  • Лукин Александр Владимирович
RU2809108C1
Способ получения многослойного покрытия для режущего инструмента 2019
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Долженко Яна Артуровна
RU2716334C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2013
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сагитов Дамир Ильдарович
  • Гатауллов Ильмир Наилевич
RU2538056C1
Способ получения многослойного покрытия для режущего инструмента 2019
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Долженко Яна Артуровна
RU2717132C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2015
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сагитов Дамир Ильдарович
RU2622532C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2013
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сагитов Дамир Ильдарович
  • Гатауллов Ильмир Наилевич
RU2538055C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2013
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сагитов Дамир Ильдарович
  • Гатауллов Ильмир Наилевич
RU2553773C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2015
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сагитов Дамир Ильдарович
  • Полозов Михаил Вячеславович
RU2622544C1
СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2015
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сагитов Дамир Ильдарович
RU2622541C1

Иллюстрации к изобретению RU 2 735 478 C1

Реферат патента 2020 года Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к нанесению износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида ниобия. Затем наносят верхний слой из нитрида соединения ниобия, титана, циркония и алюминия при их соотношении, мас. %: ниобий 43,7, титан 16,5, цирконий 38,0, алюминий 1,8. Нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый из которых выполняют из ниобия, второй - из сплава ниобия, титана и алюминия и располагают противоположно первому, а третий изготавливают из циркония и располагают между ними. Нижний слой наносят с использованием первого катода, а верхний слой - с использованием всех трех катодов. В результате повышается работоспособность режущего инструмента с многослойным покрытием. 1 ил., 1 табл.

Формула изобретения RU 2 735 478 C1

Способ получения многослойного покрытия для режущего инструмента, включающий вакуумно-плазменное нанесение многослойного покрытия, отличающийся тем, что наносят нижний слой из нитрида ниобия и верхний из нитрида соединения ниобия, титана, циркония и алюминия при соотношении компонентов, мас. %: ниобий 43,7, титан 16,5, цирконий 38,0, алюминий 1,8, при этом нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый из которых выполняют из ниобия, второй - из сплава ниобия, титана и алюминия и располагают противоположно первому, а третий изготавливают из циркония и располагают между ними, причем нижний слой наносят с использованием первого катода, а верхний слой - с использованием всех трех катодов.

Документы, цитированные в отчете о поиске Патент 2020 года RU2735478C1

СПОСОБ ПОЛУЧЕНИЯ МНОГОСЛОЙНОГО ПОКРЫТИЯ ДЛЯ РЕЖУЩЕГО ИНСТРУМЕНТА 2015
  • Табаков Владимир Петрович
  • Чихранов Алексей Валерьевич
  • Власов Станислав Николаевич
  • Сагитов Дамир Ильдарович
RU2622532C1
ЗАЩИТНОЕ ПОКРЫТИЕ, ПОКРЫТЫЙ ЭЛЕМЕНТ, ИМЕЮЩИЙ ЗАЩИТНОЕ ПОКРЫТИЕ, А ТАКЖЕ СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНОГО ПОКРЫТИЯ 2009
  • Феттер Йорг
RU2507302C2
РЕЖУЩИЙ ИНСТРУМЕНТ С ИЗНОСОСТОЙКИМ ПОКРЫТИЕМ 2013
  • Асари, Сота
  • Кикути, Масаказу
RU2588946C1
РЕЖУЩИЙ ИНСТРУМЕНТ С МНОГОСЛОЙНЫМ ПОКРЫТИЕМ 2012
  • Москвитин Александр Александрович
  • Маслов Анатолий Иванович
  • Колпаков Александр Яковлевич
  • Сидельников Александр Владимирович
RU2478731C1
РЕЖУЩАЯ ПЛАСТИНА ИЗ СПЕЧЕННОГО ИЗДЕЛИЯ И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 1995
  • Мицухиро Гото[Jp]
  • Сатору Кукино[Jp]
  • Кенити Кикутани[Jp]
  • Тецуо Накаи[Jp]
RU2104826C1
WO 2008146727 A1, 04.12.2008
US 6723391 B2, 20.04.2004
US 20060222885 A1, 05.10.2006.

RU 2 735 478 C1

Авторы

Табаков Владимир Петрович

Чихранов Алексей Валерьевич

Долженко Яна Артуровна

Даты

2020-11-03Публикация

2019-10-01Подача