Способ поиска неисправного блока в непрерывной динамической системе на основе функции чувствительности и анализа знаков передач Российский патент 2021 года по МПК G05B23/02 

Описание патента на изобретение RU2740540C1

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов.

Известен способ поиска неисправного блока в непрерывной динамической системе на основе функции чувствительности (Способ поиска неисправного блока в непрерывной динамической системе на основе функции чувствительности: пат. 2680928 Рос. Федерация: МПК7 G05B 23/02 (2006.01) / Шалобанов С.В., Шалобанов С.С. - №2018111888; заявл. 02.04.2018; опубл. 28.02.2019, Бюл. №7).

Недостатком этого способа является то, что он обеспечивает определение дефектов с невысокой различимостью, то есть обладает невысокой помехоустойчивостью.

Наиболее близким техническим решением (прототипом) является способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений и анализа знаков передач (Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений и анализа знаков передач: пат. 2711000 Рос. Федерация: МПК7 G05B 23/02 (2006.01) / Шалобанов С.В., Шалобанов С.С. - №2019116260; заявл. 27.05.2019; опубл. 14.01.2020, Бюл. №2).

Недостатком этого способа является то, что он использует задание величин относительных отклонений параметров передаточных функций для моделей с пробными отклонениями.

Технической задачей, на решение которой направлено данное изобретение, является уменьшение вычислительных затрат, связанных с реализацией моделей со структурной чувствительностью блоков передаточных функций.

Поставленная задача достигается тем, что предварительно регистрируют реакцию заведомо исправной системы на интервале t∈[0, TK] в k контрольных точках, и определяют интегральные оценки выходных сигналов системы, для чего в момент подачи входного сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование сигналов системы управления в каждой из k контрольных точек с весами где путем подачи на первые входы k блоков перемножения сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальный сигнал , выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени ТК, полученные в результате интегрирования оценки выходных сигналов регистрируют, фиксируют число m блоков системы, определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек и каждой из m моделей с функциями структурной чувствительности для каждого из m блоков динамической системы, для чего соединяют связью две модели: на вход первой модели подают тестовый сигнал x(t), выходом первой модели определяют вход контролируемого блока, соединяют выход первой модели со входом второй, входом второй модели становится выход контролируемого блока, находят интегральные оценки выходных сигналов системы для параметра α и входного сигнала x(t), полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек каждой из m совмещенных моделей со структурной функцией чувствительности регистрируют, определяют знаки интегральных оценок выходных сигналов модели, полученные в результате структурной функции чувствительности каждого из соответствующих блоков определяют нормированные значения знаков интегральных оценок выходных сигналов модели, полученных в результате структурной функции чувствительности каждого из соответствующих блоков замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал x(t), определяют интегральные оценки выходных сигналов контролируемой системы для k контрольных точек Fj(α), j=1, …, k для параметра интегрирования α, определяют отклонения интегральных оценок выходных сигналов контролируемой системы для к контрольных точек от номинальных значений определяют знаки отклонений интегральных оценок выходных сигналов контролируемой системы для к контрольных точек от номинальных значений определяют нормированные значения знаков отклонений интегральных оценок сигналов контролируемой системы из соотношения определяют диагностические признаки из соотношения по минимуму значения диагностического признака определяют неисправный блок.

Таким образом, предлагаемый способ поиска неисправного блока сводится к выполнению следующих операций:

1. В качестве динамической системы рассматривают систему, состоящую из произвольно соединенных m динамических блоков.

2. Предварительно определяют время контроля ТК≥ТПП, где ТПП - время переходного процесса системы. Время переходного процесса оценивают для номинальных значений параметров динамической системы.

3. Определяют параметр интегрального преобразования сигналов из соотношения

4. Фиксируют число контрольных точек k.

5. Предварительно определяют нормированные векторы знаков интегральных оценок выходных сигналов модели, полученных в результате интегрирования функций чувствительности i-го блока каждого из m блоков для номинальных значений параметров передаточных функций блоков и определенного выше параметра α, для чего выполняют пункты 6-10.

6. Подают тестовый сигнал x(t) (единичный ступенчатый, линейно возрастающий, прямоугольный импульсный и т.д.) на вход системы управления с номинальными характеристиками. Принципиальных ограничений на вид входного тестового воздействия предлагаемый способ не предусматривает.

7. Регистрируют реакцию системы на интервале t∈[0, Тк] в k контрольных точках и определяют интегральные оценки выходных сигналов системы. Для этого в момент подачи тестового сигнала на вход системы управления с номинальными характеристиками одновременно начинают интегрирование выходных сигналов системы управления в каждой из k контрольных точек с весами где для чего сигналы системы управления подают на первые входы к блоков перемножения, на вторые входы блоков перемножения подают экспоненциальный сигнал выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени ТК, полученные в результате интегрирования оценки выходных сигналов регистрируют.

8. Определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек, полученные в результате использования структурной функции чувствительности каждого из m блоков, для чего поочередно для каждого блока динамической системы соединяют связью две модели: на вход первой модели подают тестовый сигнал x(t), выходом первой модели становится вход контролируемого блока, соединяют выход первой модели со входом второй, входом второй модели становится выход контролируемого блока, и выполняют пункты 6 и 7 для одного и того же тестового сигнала x(t). Полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждой из m совмещенных моделей со структурной функцией чувствительности регистрируют.

9. Определяют знаки интегральных оценок выходных сигналов модели, полученные в результате использования структурной функции чувствительности по формуле:

10. Определяют нормированные значения знаков интегральных оценок выходных сигналов модели, полученные в результате использования структурной функции чувствительности по формуле:

11. Замещают систему с номинальными характеристиками контролируемой. На вход системы подают аналогичный тестовый сигнал x(t).

12. Определяют интегральные оценки выходных сигналов контролируемой системы для к контрольных точек Fj(α), j=1, …, k, осуществляя операции, описанные в пунктах 6 и 7 применительно к контролируемой системе.

13. Определяют отклонения интегральных оценок выходных сигналов контролируемой системы для к контрольных точек от номинальных значений

14. Определяют знаки отклонений интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений

15. Вычисляют нормированные значения знаков отклонений интегральных оценок выходных сигналов контролируемой системы по формуле:

16. Вычисляют диагностические признаки наличия неисправного структурного блока по формуле:

17. По минимуму значения диагностического признака определяют дефектный блок.

Рассмотрим реализацию предлагаемого способа поиска дефекта для системы, структурная схема которой представлена на рисунке (см. чертеж Структурная схема объекта диагностирования).

Передаточные функции блоков:

номинальные значения параметров: K1=1; Т1=5 с; K2=1; Т2=1 с; К3=1; Т3=5 с.

При поиске одиночного дефекта в виде отклонения постоянной времени Т1=4 с (дефект №1) в первом звене путем подачи ступенчатого тестового входного сигнала единичной амплитуды и интегральных оценок сигналов для параметра α=0.5 и Тк=10 с получены значения диагностических признаков на основе структурной функции чувствительности и анализа знаков передач при использовании трех контрольных точек, расположенных на выходах блоков: J1=0; J2=0.8889; J3=0.8889. Минимальное значение признака J1 однозначно указывает на наличие дефекта в первом блоке, а разность между третьим и первым, а также вторым и первым признаками может количественно характеризовать практическую (апостериорную) различимость этого дефекта. Тот же дефект, найденный на основе структурной функции чувствительности без использования анализа знаков передач (Способ поиска неисправного блока в непрерывной динамической системе на основе функции чувствительности: пат. 2680928 Рос. Федерация: МПК G05B 23/02 (2006.01) / Шалобанов С.В., Шалобанов С.С. - №2018111888; заявл. 02.04.2018; опубл. 28.02.2019, Бюл. №7), дает следующие значения диагностических признаков: J1=0; J2=0.78; J3=0.074. Анализ значений диагностических признаков показывает, что разность между третьим и первым признаками может количественно характеризовать практическую (апостериорную) различимость этого дефекта. Это позволяет сделать вывод, что практическая различимость дефекта первого блока (на основе структурной функции чувствительности без использования анализа знаков передач) ниже, чем различимость дефекта при использовании заявляемого способа. Различимости дефектов второго и третьего блоков при поиске их заявляемым способом тоже выше, чем на основе структурной функции чувствительности без использования анализа знаков передач.

Моделирование процессов поиска дефектов во втором и третьем блоках для данного объекта диагностирования, при том же параметре интегрирования α и при единичном ступенчатом входном сигнале для способа на основе структурной функции чувствительности без использования анализа знаков передач (Способ поиска неисправного блока в непрерывной динамической системе на основе функции чувствительности: пат. 2680928 Рос. Федерация: МПК7 G05B 23/02 (2006.01) / Шалобанов С.В., Шалобанов С.С - №2018111888; заявл. 02.04.2018; опубл. 28.02.2019, Бюл. №7):

При наличии дефекта в блоке №2 (в виде уменьшения параметра Т2 на 20%, дефект №2): J1=0.7829; J2=0; J3=0.746.

При наличии дефекта в блоке №3 (в виде уменьшения параметра Т3 на 20%, дефект №3) J1=0.07406; J2=0.7471; J3=0.

Моделирование процессов поиска дефектов заявляемым способом во втором и третьем блоках для данного объекта диагностирования, при том же параметре интегрирования α и при единичном ступенчатом входном сигнале дает следующие значения диагностических признаков:

При наличии дефекта в блоке №2 (в виде уменьшения параметра Т2 на 20%, дефект №2): J1=0.8889; J2=0; J3=0.8889.

При наличии дефекта в блоке №3 (в виде уменьшения параметра Т3 на 20%, дефект №3) J1=0.8889; J2=0.8889; J3=0.

Минимальное значение диагностического признака во всех случаях правильно указывает на дефектный блок.

Похожие патенты RU2740540C1

название год авторы номер документа
Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений и анализа знаков передач 2019
  • Шалобанов Сергей Викторович
  • Шалобанов Сергей Сергеевич
RU2711000C1
Способ поиска неисправного блока в непрерывной динамической системе на основе функции чувствительности 2018
  • Шалобанов Сергей Викторович
  • Шалобанов Сергей Сергеевич
RU2680928C1
Способ поиска неисправного блока в непрерывной динамической системе на основе функции чувствительности 2020
  • Шалобанов Сергей Викторович
  • Шалобанов Сергей Сергеевич
RU2740542C1
Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала и анализа знаков передач 2019
  • Шалобанов Сергей Викторович
  • Шалобанов Сергей Сергеевич
RU2721217C1
Способ поиска неисправного блока в непрерывной динамической системе на основе функции чувствительности 2019
  • Шалобанов Сергей Сергеевич
RU2719747C1
СПОСОБ ПОИСКА НЕИСПРАВНОГО БЛОКА В ДИСКРЕТНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ НА ОСНОВЕ АНАЛИЗА ЗНАКОВ ПЕРЕДАЧ СИГНАЛОВ 2013
  • Шалобанов Сергей Викторович
  • Шалобанов Сергей Сергеевич
RU2541896C1
Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала 2017
  • Шалобанов Сергей Викторович
  • Шалобанов Сергей Сергеевич
RU2661180C1
Способ поиска неисправного блока в дискретной динамической системе на основе смены позиции входного сигнала 2017
  • Шалобанов Сергей Викторович
  • Шалобанов Сергей Сергеевич
RU2658547C1
Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений 2018
  • Шалобанов Сергей Сергеевич
RU2676365C1
Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений 2016
  • Шалобанов Сергей Сергеевич
RU2613630C1

Иллюстрации к изобретению RU 2 740 540 C1

Реферат патента 2021 года Способ поиска неисправного блока в непрерывной динамической системе на основе функции чувствительности и анализа знаков передач

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов. Техническим результатом является уменьшение вычислительных затрат, связанных с реализацией моделей со структурной чувствительностью блоков передаточных функций. В заявленном способе, в частности, предварительно регистрируют реакцию заведомо исправной системы, на интервале в контрольных точках, и определяют интегральные оценки выходных сигналов системы, для чего в момент подачи входного сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование сигналов системы управления в каждой из контрольных точек с весами, путем подачи на первые входы блоков перемножения сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальный сигнал, определяют знаки отклонений интегральных оценок выходных сигналов контролируемой системы для контрольных точек от номинальных значений, определяют нормированные значения знаков отклонений интегральных оценок сигналов контролируемой системы, определяют диагностические признаки, по минимуму значения диагностического признака определяют неисправный блок. 1 ил.

Формула изобретения RU 2 740 540 C1

Способ поиска неисправного блока в непрерывной динамической системе на основе функции чувствительности и анализа знаков передач, основанный на том, что фиксируют число блоков m, входящих в состав системы, определяют время контроля ТК≥ТПП, где ТПП - время переходного процесса системы, определяют параметр интегрального преобразования сигналов из соотношения используют тестовый сигнал на интервале t∈[0,TK], в качестве динамических характеристик системы используют интегральные оценки сигналов, полученные для вещественных значений параметра α, фиксируют число k контрольных точек системы, регистрируют реакцию объекта диагностирования и реакцию заведомо исправной системы , на интервале t∈[0,TK] в k контрольных точках, определяют интегральные оценки выходных сигналов , исправной системы, для чего в момент подачи тестового сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование выходных сигналов системы управления в каждой из k контрольных точек с весами , где , путем подачи на первые входы k блоков перемножения выходных сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальный сигнал выходные сигналы k блоков перемножения подают на входы k блоков интегрирования, интегрирование завершают в момент времени ТК, полученные в результате интегрирования оценки выходных сигналов , регистрируют, замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал x(t), определяют интегральные оценки выходных сигналов контролируемой системы для k контрольных точек Fj(α), j=1, …, k, для параметра α, определяют отклонения интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений определяют знаки отклонений интегральных оценок выходных сигналов контролируемой системы для k контрольных точек от номинальных значений вычисляют нормированные значения знаков отклонений интегральных оценок выходных сигналов контролируемой системы определяют диагностические признаки, по минимуму значения диагностического признака определяют дефектный блок, отличающийся тем, что определяют интегральные оценки выходных сигналов модели для каждой из k контрольных точек, полученные в результате использования функции структурной чувствительности каждого из m блоков динамической системы, для чего соединяют связью две модели: на вход первой модели подают тестовый сигнал x(t), выходом первой модели становится вход контролируемого блока, соединяют выход первой модели со входом второй, входом второй модели становится выход контролируемого блока, и находят интегральные оценки выходных сигналов системы для параметра α и тестового сигнала x(t), полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек и каждой из m совмещенных моделей со структурной функцией чувствительности Vji(α), j=1, …, k; i=1, …, m, регистрируют, определяют знаки интегральных оценок выходных сигналов модели, полученные в результате использования функции структурной чувствительности блоков определяют нормированные значения знаков интегральных оценок выходных сигналов модели, полученные в результате использования функции структурной чувствительности блоков вычисляют диагностические признаки наличия неисправного структурного блока по формуле

Документы, цитированные в отчете о поиске Патент 2021 года RU2740540C1

СПОСОБ ПОИСКА НЕИСПРАВНОСТЕЙ БЛОКОВ В НЕПРЕРЫВНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ 2011
  • Шалобанов Сергей Викторович
  • Шалобанов Сергей Сергеевич
RU2473105C1
Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений 2016
  • Шалобанов Сергей Сергеевич
RU2613630C1
US 4851985 A1, 25.07.1989
СПОСОБ ПОИСКА НЕИСПРАВНОГО БЛОКА В ДИСКРЕТНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ НА ОСНОВЕ АНАЛИЗА ЗНАКОВ ПЕРЕДАЧ СИГНАЛОВ 2013
  • Шалобанов Сергей Викторович
  • Шалобанов Сергей Сергеевич
RU2541896C1
СПОСОБ ПОИСКА НЕИСПРАВНЫХ БЛОКОВ В ДИСКРЕТНОЙ ДИНАМИЧЕСКОЙ СИСТЕМЕ 2012
  • Воронин Владимир Викторович
  • Шалобанов Сергей Викторович
  • Шалобанов Сергей Сергеевич
RU2473949C1

RU 2 740 540 C1

Авторы

Шалобанов Сергей Викторович

Шалобанов Сергей Сергеевич

Даты

2021-01-15Публикация

2020-06-16Подача