Способ экспрессной изоляции поглощающей зоны в скважине при высокодебитном межпластовом перетоке из вышележащего высоконапорного пласта, насыщенного крепкими рассолами, и пакерное оборудование для его осуществления Российский патент 2021 года по МПК E21B33/124 

Описание патента на изобретение RU2741978C1

Изобретение относится к нефтяной и газовой промышленности, а именно к технологии строительства глубоких скважин, добычи нефти и газа, в частности, к способам быстрой изоляции зоны гидроразрыва пласта и катастрофического поглощения в условиях межпластового перетока из межсолевого рапопроявляющего в поглощающий пласт.

Особенностью геологического строения некоторых месторождений углеводородов является наличие аномально гидропроводных каверно-трещинных карстово-объединенных межсолевых пластов коллекторов [Лусиа Ф. Дж. Построение геолого-гидродинамической модели карбонатного коллектора: интегрированный подход. - М. - Ижевск: НИЦ «Регулярная и хаотическая динамика». Ижевский ин-т комп. иссл., 2010, - 384 с.] с аномально-высокими пластовыми давлениями (АВПД) флюидов - рапы, нефти и газа в средней части разреза осадочного чехла (например, одно из нефтегазоконденсатных месторождений Лено-Тунгусской нефтегазоносной провинции) на глубинах 1300-2000 м, вскрытие забоем скважины высокодебитных (до 5-8 тыс. м3/сут) рапопроявляющих каверно-трещинных пластов-коллекторов затрудняет или исключает бурение скважин на целевые нижележащие горизонты (глубины 3300-3600 м) с углеводородным (УВ) насыщением и аномально низким пластовым давлением (АНПД). Продолжение бурения без перекрытия межсолевых высоконапорных продуктивных пластов невозможно в силу несовместимости условий бурения. Межсолевые зоны АВПД характеризуются очень высокими пластовыми давлениями (более 40 МПа на глубинах по вертикали 1300-2000 м) и насыщением в виде предельно насыщенных рассолов (плотность до 1450 кг/м3). В то же время по геопромысловым данным межсолевые коллекторы локализованы в геологическом разрезе, и поэтому аномально высокое пластовое давление (АВПД) рапы характерно в локальном интервале разреза - в конкретном межсолевом пласте-коллекторе, а ниже по разрезу в пластах-коллекторах фиксируется пластовое (поровое) давление, близкое к нормальному гидростатическому [Вахромеев А.Г., Сверкунов С.А., Ильин А.И., Поспеев А.В. Горлов И.В. Горно-геологические условия бурения рапопроявляющих зон с аномально высоким пластовым давлением в природных резервуарах кембрия на Ковыктинском газоконденсатном месторождении // Известия Сибирского отделения Секции наук о Земле РАЕН, 2016. - №2 (55). - С. 74-87].

При вскрытом рапопроявляющем пласте-коллекторе с АВПД рапы продолжение бурения скважины на тяжелом буровом растворе плотностью более 2420 кг/м3, либо с противодавлением при бурении с регулируемым давлением нередко приводит к самопроизвольному возникновению гидроразрыва пласта в нижележащих по разрезу «слабых» пластах (то есть в пластах с пластовым (поровым) давлением, близким к гидростатическому). В этом случае в открытом стволе скважины между высокодебитным рапогазопроявляющим и поглощающим пластами возникает межпластовый переток, который крайне сложно ликвидировать. Одной из значимых особенностей такого перетока является то, что зона искусственной трещины авто-гидроразрыва пласта (авто-ГРП) на забое формируется самопроизвольно. Далее, с момента зарождения трещины авто-ГРП, рапопроявляющий межсолевой АВПД-пласт поддерживает давление (перепад давления - репрессию) в открытом стволе скважины, обеспечивающее непрерывное расширение области распространения трещины авто-ГРП от забоя скважины по пласту, т.е. поддерживает авто-ГРП-процесс подобно тому, как это реализуется при плановом создании и закреплении искусственной ГРП-трещины [Усачев П.М. Гидравлический разрыв пласта// М.: Недра, 1986. - 165 с.] Второй значимой особенностью такого спонтанного межпластового перетока в скважине в интервале между пластами рапогазопроявляющим и поглощающим является расход флюида (рапы) на уровне нескольких тысяч м3/сут.

Таким образом, перепад давлений dP (репрессия между величиной АВПД рапопроявляющего и величиной порового давления поглощающего пластов) и расход рапы - природной флюидной системы, обеспечиваемые природными параметрами рапопроявляющего пласта, формируют проблему в буровом цикле - как надежно выполнить изоляцию зоны авто-ГРП - зоны катастрофического поглощения, поскольку в условиях высокодебитного перетока невозможно качественно зацементировать обсадную колонну, которой планируют перекрыть рапопроявляющие трещинные пласты-коллекторы и поглощающие межсолевые пласты.

При этом изоляция вышележащего высоконапорного рапопроявляющего пласта без отсечения на забое нижележащего поглощающего пласта при межпластовом перетоке невозможна.

Известен (патент РФ на изобретение №2018631, Е21В 33/138 (1990.01), дата публикации: 30.08.1994) тампон для изоляции зоны поглощения при бурении скважин, содержащий ленточно-нитевидный наполнитель, разбуриваемый груз, который выполнен с возможностью его размещения в стволе скважины в рабочем положении, а ленточно-нитевидный наполнитель выполнен в виде пучка с возможностью его расправления в потоке тампонажного раствора, при этом один из концов пучка ленточно-нитевидного наполнителя жестко связан с разбуриваемым грузом.

Известен (патент РФ на изобретение 2049909, Е21В 33/14 (1995.01), дата публикации: 10.12.1995) тампон для изоляции зоны поглощения при бурении скважин, содержащий ленточно-нитевидные наполнители различной плотности и груз из разбуриваемого материала, при этом наполнители содержат разноразмерные ленточные лоскуты и выполнены в виде пучка, один из концов которого жестко связан с торцевой частью груза, причем наполнители с плотностью меньше 1 г/см3 связаны с центральной частью груза, а наполнители с плотностью больше 1 г/см3 с периферийной частью груза.

Известна («Геофизические методы исследования скважин», М: «Недра», 1983, 591 с, стр. 32) конструкция пакера, содержащего трансформируемый корпус, причем в корпусе размещено средство, препятствующее прохождению жидкости, представляющее собой слой волокон, выполненных из органических полимеров и/или стекловолокна, причем корпус выполнен из материалов, по меньшей мере, малорастворимых в скважинной жидкости.

Известно (патент РФ на изобретение №2330931, Е21В 33/12 (2006.01), G01V 1/00 (2006.01), дата публикации: 10.08.2008) устройство, выполняющее функцию пакера или временной пробки, которое представляет собой трансформируемый пакер, спускаемый на глубину установки на трубах или геофизическом кабеле.

Недостатком перечисленных технических решений известных тампонов и пакеров рассмотренных конструкций следует признать сложность их установки в скважине при межпластовом перетоке, а именно возникновение повышенных нагрузок на геофизический кабель после прохождения проявляющей зоны, в результате которых может возникнуть отсоединение пакера от геофизического кабеля до приведения его в действие, а при использовании колонны труб могут возникнуть очень большие одномоментные растягивающие нагрузки - до 70 тонн, и невозможность удерживать большие перепады давления (репрессию) между проявляющим и поглощающим пластом 5-15 МПа.

Наиболее близким по технической сущности устройством является («Геофизические методы исследования скважин», М., «Недра», 1983, 591 с, стр. 550 - прототип устройства) конструкция взрывного разбуриваемого пакера, содержащего корпус, трансформируемый давлением пороховых газов.

Недостатком данного устройства является то, что он может использоваться в обсадной колонне с выдержанным внутренним диаметром, а в открытом стволе диаметр не выдержан из-за каверн, его установка неэффективна. Также подача сигнала для активации взрыв-пакера осуществляется через электрический импульс. При установке в скважине при межпластовом перетоке возникают повышенные нагрузки на геофизический кабель после прохождения проявляющей зоны, в результате которых может возникнуть отсоединение пакера от геофизического кабеля до приведения его в действие, а при использовании колонны труб могут возникнуть очень большие одномоментные растягивающие нагрузки - до 70 тонн, и невозможность удерживать большие перепады давления (репрессию) между проявляющим и поглощающим пластом 5-15 МПа. В результате чего активация взрыв-пакера не представляется возможным.

Наиболее близким по технической сущности способом является способ проведения изоляционных работ в скважине (патент РФ на изобретение №2414586, Е21В 33/13 (2006.01), Е21В 33/12 (2006.01), дата публикации 20.03.2011 - прототип способа), содержащий спуск разбуриваемого пакера на колонне бурильных труб, распакеровку и проведение работ по изоляции зоны поглощения нижележащего и вышележащего интервала.

Недостатком данного способа является то, что использование при спуске разбуриваемого пакера на колонне бурильных труб в зону межпластового перетока (выше находится высоконапорный проявляющий пласт, ниже - поглощающий пласт) будет резкий прирост веса на крюке за счет перепада давления между проявляющим и поглощающим пластом более 10 МПа, прирост веса в диаметре ствола 295,3 мм может составить до 70 тонн к собственному. В данном случае весьма вероятны аварийные ситуации. Также этот способ является достаточно длительным по времени.

Задачей предлагаемого изобретения является разработка алгоритма (последовательности операций) в цикле бурения скважины с целью экспрессной (быстрой) временной изоляции зоны поглощения и возникшего высокодебитного межпластового перетока, который (алгоритм) надежно обеспечит возможность продолжения работ по изоляции высоконапорного проявляющего пласта на забое скважины, в дальнейшем обеспечит возврат к работам по окончательной изоляции поглощающего пласта, бурения и заканчивания скважины и дальнейшей добычи нефти и газа из нижележащих пластов, а также разработка применяемого для осуществления предлагаемого способа пакерного оборудования.

Сущность предлагаемого изобретения - экспрессная (быстрая) временная изоляция нижележащего поглощающего пласта путем установки пакерного оборудования, включающего два разбуриваемых пакера с разным принципом срабатывания в ствол скважины.

Технический результат - доведение скважины до проектного забоя, надежного крепления открытого ствола скважины обсадной колонной и обеспечение безаварийной добычи нефти и газа (достигается упрощением технологии размещения пакеров в скважине).

Технический результат достигается предлагаемым способом экспрессной изоляции поглощающей зоны в скважине при высокодебитном межпластовом перетоке из вышележащего высоконапорного пласта, насыщенного крепкими рассолами, включающий определение глубины кровли поглощающего пласта и глубины зоны поглощения по данным геофизических исследований, спуск разбуриваемого пакерного оборудования в скважину на спусковом инструменте, при этом спуск разбуриваемого пакерного оборудования осуществляется на геофизическом кабеле с установленной нагрузкой на разъединение 20 кН сверх собственного веса, далее при спуске ниже интервала высоконапорного рапопроявляющего пласта вследствие создания дополнительной нагрузки на разгонный блок за счет перепада давления между проявляющим и поглощающим пластом происходит отсоединение кабеля от пакерного оборудования, при этом пакерное оборудование, увлекаемое потоком жидкости, разгоняется и доходит до забоя, где при ударе головной части утяжеляющего конусного пригруза с разгонным блоком об забой трансформируемый пакер за счет скорости движения по стволу скважины деформируется и перекрывает поток жидкости в поглощающий пласт, далее водонабухающий пакер дополнительно изолирует зону поглощения, и с течением времени выпадающая из рассола соль дополнительно изолирует поглощающий пласт, обеспечивая дальнейший переход к работам по изоляции высоконапорного рапопроявляющего пласта обсадной колонной.

Пакерное оборудование включает трансформируемый пакер с заделкой под геофизический кабель, при этом оно дополнительно содержит водонабухающий пакер, утяжеляющий конусный пригруз с разгонным блоком, снабженным хвостовым оперением, при этом пакеры жестко связаны между собой штоком, а утяжеляющий конусный пригруз с разгонным блоком соединен с трансформируемым пакером гибкой сцепкой.

Изобретение поясняется чертежами, где на фиг. 1 представлен общий вид предлагаемого пакерного оборудования для осуществления способа.

Пакерное оборудование включает в свою компоновку (фиг. 1): утяжеленный конусный пригруз 1 с разгонным блоком 2 с хвостовым оперением, служащий направлением при спуске компоновки пакеров, в том числе после отсоединения геофизического кабеля, гибкая сцепка 3, трансформируемый пакер 4, водонабухающий пакер 5, шток 6, соединяющий трансформируемый 4 и водонабухающий 5 пакеры, заделка 7 под геофизический кабель.

На фиг. 2 показан вид пакерного оборудования после активации на забое скважины.

На фиг. 3 показан выполненный в верхней части утяжеленного конусного пригруза 1 разгонный блок 2 с хвостовым оперением, который больше диаметра скважины 8.

ПРИМЕР

В качестве примера показаны типичные условия при вскрытии бурением высоконапорных высокодебитных пластов, насыщенных крепкими рассолами, на одном из нефтегазоконденсатных месторождений Лено-Тунгусской нефтегазоносной провинции (НГП).

Глубина спуска предыдущей обсадной колонны 245 мм - 2100 м.

Глубина высоконапорного пласта - 2150 м.

Давление в высоконапорном пласте - 52 МПа (градиент пластового давления 2,42 кг/см2 на 10 м).

Дебит высоконапорного пласта 4000 м3/сут при депрессии в 10 МПа. При депрессии 7 МПа дебит составляет 3000 м3/сут.

Плотность бурового раствора - 1900 кг/м3.

При бурении долотом 215,9 мм на плотности бурового раствора 2000 кг/см3 с регулируемым давлением на глубине 2150 м вскрыт высоконапорный продуктивный рапоносный пласт с АВПД. Устьевое давление выросло до 9 МПа. При вымыве забойной пачки зафиксировано поступление природного рассола - рапы в ствол скважины (плотность 1400 кг/м3) с увеличением газопоказаний до 5-8%.

Далее продолжено бурение до глубины 2300 м с регулируемым давлением с противодавлением на устье 9-10 МПа. Наблюдалось поглощение до 2-3 м3/ч. Поступление рассола-рапы в скважину не зафиксировано.

При забое 2300 м закрытием роторного устьевого герметизатора (РУГ) устьевое давление было увеличено до 12 МПа, при этом произошло резкое падение устьевого давления до 0, зафиксировано полное поглощение. Статический уровень в скважине упал до глубины 50 м (давление приемистости поглощающего пласта составляет ориентировочно 45 МПа). В скважине начался межпластовый переток при перепаде давления между проявляющим и поглощающим пластом 7 МПа. Далее проводится стандартный комплекс геофизических исследований скважины по определению глубины кровли поглощающего пласта и глубины зоны поглощения по данным геофизических исследований. По данным геофизических исследований скважины зона поглощения идентифицируется на забое (глубина 2300 м) в карбонатном пласте. Кровля карбонатного пласта по данным геофизических исследований идентифицируется на глубине 2295 м. Либо глубина кровли также может быть определена по падению механической скорости при бурении галогенно-карбонатной толщи. Диаметр скважины в карбонатном пласте близок к номинальному, так как каверны в твердых породах не намываются, что оптимально для установки компоновки пакеров. При этом мощность карбонатного пласта (5 м) позволяет произвести установку компоновки пакеров в данном карбонатном пласте.

В целом пакерное оборудование собирается в виде стрелы с головной частью в виде охотничьей пули с разгонным блоком.

Утяжеляющий конусный пригруз в головной части сборки играет центрирующую роль и роль утяжелителя (90% веса сборки). Все элементы компоновки пакеров выполняются из легкоразбуриваемых материалов. Утяжеляющий конусный пригруз может быть выполнен из медных, латунных и свинцовых сплавов.

Гибкая сцепка ориентировочно составляет по длине около 0,4 м.

Длина сборки пакеров определяется по результатам геофизических исследований скважины для определения оптимального расстояния между пакерами и перекрытия зоны поглощения.

Производится спуск пакерного оборудования, включающего компоновку пакеров: трансформируемый 4 и водонабухающий 5, на геофизическом кабеле до глубины 2150 м. Длина сборки пакеров подобрана таким образом, что кратно превышает суммарную длину зоны поглощения в призабойной зоне скважины. Далее фиксируется рост нагрузки (ориентировочный прирост веса при избыточном давлении 7 МПа на пакер составит около 250 кН), произойдет отсоединение кабеля от пакерного оборудования при нагрузке более 20 кН (что является одной из стандартных величин при заделке 7 геофизического кабеля), далее скоростью потока (около 1 м/с) компоновка пакеров увлекается на забой. Трансформируемый пакер 4 деформируется об забой скважины за счет скорости движения в потоке и последующего роста давления на пакер (7 МПа, что соответствует по силе воздействия величине 250 кН), и перекрывает зону поглощения, с течением времени водонабухающий пакер 5 дополнительно перекрывает зону поглощения, при этом выпадающая из рассола соль из-за смены термобарических условий (в скважине относительно пластовых) дополнительно изолирует поглощающий пласт.

Похожие патенты RU2741978C1

название год авторы номер документа
Способ вскрытия высоконапорных пластов, насыщенных крепкими рассолами 2020
  • Вахромеев Андрей Гелиевич
  • Сверкунов Сергей Александрович
  • Лисицин Максим Алексеевич
  • Смирнов Александр Сергеевич
  • Горлов Иван Владимирович
  • Ружич Валерий Васильевич
  • Ташкевич Иван Дмитриевич
RU2735504C1
СПОСОБ ВЫЯВЛЕНИЯ ВЫСОКОДЕБИТНЫХ ОБЪЕКТОВ РАПОГАЗОНОСНЫХ СТРУКТУР С АНОМАЛЬНО ВЫСОКИМ ПЛАСТОВЫМ ДАВЛЕНИЕМ ФЛЮИДОВ, ФОНТАНООПАСНЫХ ДЛЯ БУРЕНИЯ СКВАЖИН 2017
  • Вахромеев Андрей Гелиевич
  • Сверкунов Сергей Александрович
  • Горлов Иван Владимирович
  • Смирнов Александр Сергеевич
  • Хохлов Григорий Анатольевич
  • Огибенин Валерий Владимирович
  • Ильин Антон Игоревич
RU2653959C1
СПОСОБ ВЫЯВЛЕНИЯ РАПОГАЗОНОСНЫХ СТРУКТУР С АНОМАЛЬНО ВЫСОКИМ ПЛАСТОВЫМ ДАВЛЕНИЕМ ФЛЮИДОВ 2017
  • Вахромеев Андрей Гелиевич
  • Хохлов Григорий Анатольевич
  • Сверкунов Сергей Александрович
  • Иванишин Владимир Мирославович
  • Горлов Иван Владимирович
  • Смирнов Александр Сергеевич
RU2661062C1
СПОСОБ ЛОКАЛЬНОГО ПРОГНОЗА ЗОН РАПОПРОЯВЛЕНИЙ 2017
  • Ильин Антон Игоревич
  • Вахромеев Андрей Гелиевич
  • Компаниец Софья Викторовна
  • Агафонов Юрий Александрович
  • Буддо Игорь Владимирович
  • Шарлов Максим Валерьевич
  • Поспеев Александр Валентинович
  • Мисюркеева Наталья Викторовна
  • Сверкунов Сергей Александрович
  • Горлов Иван Владимирович
  • Смирнов Александр Сергеевич
  • Огибенин Валерий Владимирович
RU2661082C1
Способ создания фильтрационной завесы при бурении высоконапорных пластов, насыщенных крепкими хлоридно-кальциевыми рассолами 2020
  • Брагина Орианда Александровна
  • Вахромеев Андрей Гелиевич
  • Ташкевич Иван Дмитриевич
  • Сверкунов Сергей Александрович
RU2735508C1
Способ строительства скважины в осложненных условиях 2022
  • Акчурин Ренат Хасанович
  • Низамов Данил Геннадьевич
  • Вахромеев Андрей Гелиевич
  • Сверкунов Сергей Александрович
  • Ташкевич Иван Дмитриевич
  • Брагина Орианда Александровна
  • Пуляевский Максим Сергеевич
RU2797175C1
Способ одновременной добычи флюидов, склонных к температурному фазовому переходу 2020
  • Сверкунов Сергей Александрович
  • Вахромеев Андрей Гелиевич
  • Смирнов Александр Сергеевич
  • Горлов Иван Владимирович
RU2740884C1
СПОСОБ СТРОИТЕЛЬСТВА КОНСТРУКЦИИ ГЛУБОКОЙ СКВАЖИНЫ, ТАМПОНАЖНЫЙ РАСТВОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ И КОНСТРУКЦИЯ ГЛУБОКОЙ СКВАЖИНЫ 2008
  • Пономаренко Дмитрий Владимирович
  • Дмитриевский Анатолий Николаевич
  • Журавлев Сергей Романович
  • Куликов Константин Владимирович
  • Калинкин Александр Вячеславович
  • Филиппов Андрей Геннадьевич
RU2386787C9
СПОСОБ СТРОИТЕЛЬСТВА СКВАЖИНЫ В ОСЛОЖНЕННЫХ УСЛОВИЯХ 2016
  • Вахромеев Андрей Гелиевич
  • Сверкунов Сергей Александрович
  • Ильин Антон Игоревич
  • Горлов Иван Владимирович
RU2630519C1
Способ бурения скважин при активном рапопроявлении 2023
  • Двойников Михаил Владимирович
  • Сидоркин Дмитрий Иванович
  • Юртаев Сергей Леонидович
  • Минаев Яков Денисович
RU2811501C1

Иллюстрации к изобретению RU 2 741 978 C1

Реферат патента 2021 года Способ экспрессной изоляции поглощающей зоны в скважине при высокодебитном межпластовом перетоке из вышележащего высоконапорного пласта, насыщенного крепкими рассолами, и пакерное оборудование для его осуществления

Изобретение относится к нефтяной и газовой промышленности, в частности, к способам изоляции зоны гидроразрыва пласта и катастрофического поглощения в условиях межпластового перетока из рапопроявляющего в поглощающий пласт. Для осуществления способа экспрессной изоляции поглощающей зоны в скважине определяют глубину кровли поглощающего пласта и глубину зоны поглощения по данным геофизических исследований. Спускают разбуриваемое пакерное оборудование в скважину на геофизическом кабеле с установленной нагрузкой на разъединение 20 кН сверх собственного веса. При спуске ниже интервала высоконапорного рапопроявляющего пласта вследствие создания дополнительной нагрузки на разгонный блок за счет перепада давления между проявляющим и поглощающим пластом происходит отсоединение кабеля от пакерного оборудования. Пакерное оборудование, увлекаемое потоком жидкости, разгоняется и доходит до забоя, где при ударе головной части утяжеляющего конусного пригруза с разгонным блоком о забой трансформируемый пакер за счет скорости движения по стволу скважины деформируется и перекрывает поток жидкости в поглощающий пласт. Водонабухающий пакер дополнительно изолирует зону поглощения, и с течением времени выпадающая из рассола соль дополнительно изолирует поглощающий пласт, обеспечивая дальнейший переход к работам по изоляции высоконапорного рапопроявляющего пласта обсадной колонной. Пакерное оборудование содержит трансформируемый пакер с заделкой под геофизический кабель, водонабухающий пакер, утяжеляющий конусный пригруз с разгонным блоком, снабженным хвостовым оперением. Пакеры жестко связаны между собой штоком. Утяжеляющий конусный пригруз с разгонным блоком соединен с трансформируемым пакером гибкой сцепкой. Достигается технический результат - доведение скважины до проектного забоя и повышение надежности крепления открытого ствола скважины обсадной колонной и обеспечение безаварийной добычи нефти и газа. 2 н.п. ф-лы, 3 ил.

Формула изобретения RU 2 741 978 C1

1. Способ экспрессной изоляции поглощающей зоны в скважине при высокодебитном межпластовом перетоке из вышележащего высоконапорного пласта, насыщенного крепкими рассолами, включающий определение глубины кровли поглощающего пласта и глубины зоны поглощения по данным геофизических исследований, спуск разбуриваемого пакерного оборудования в скважину на спусковом инструменте, отличающийся тем, что спуск разбуриваемого пакерного оборудования осуществляется на геофизическом кабеле с установленной нагрузкой на разъединение 20 кН сверх собственного веса, далее при спуске ниже интервала высоконапорного рапопроявляющего пласта вследствие создания дополнительной нагрузки на разгонный блок за счет перепада давления между проявляющим и поглощающим пластом происходит отсоединение кабеля от пакерного оборудования, при этом пакерное оборудование, увлекаемое потоком жидкости, разгоняется и доходит до забоя, где при ударе головной части утяжеляющего конусного пригруза с разгонным блоком об забой трансформируемый пакер за счет скорости движения по стволу скважины деформируется и перекрывает поток жидкости в поглощающий пласт, далее водонабухающий пакер дополнительно изолирует зону поглощения, и с течением времени выпадающая из рассола соль дополнительно изолирует поглощающий пласт, обеспечивая дальнейший переход к работам по изоляции высоконапорного рапопроявляющего пласта обсадной колонной.

2. Пакерное оборудование, включающее трансформируемый пакер с заделкой под геофизический кабель, отличающееся тем, что оно дополнительно содержит водонабухающий пакер, утяжеляющий конусный пригруз с разгонным блоком, снабженным хвостовым оперением, при этом пакеры жестко связаны между собой штоком, а утяжеляющий конусный пригруз с разгонным блоком соединен с трансформируемым пакером гибкой сцепкой.

Документы, цитированные в отчете о поиске Патент 2021 года RU2741978C1

СПОСОБ ПРОВЕДЕНИЯ ИЗОЛЯЦИОННЫХ РАБОТ В СКВАЖИНЕ И ПАКЕРНОЕ ОБОРУДОВАНИЕ 2010
  • Нагуманов Марат Мирсатович
  • Аминев Марат Хуснуллович
  • Шайхутдинов Марат Магасумович
RU2414586C1
Пакер сбрасываемого типа 1958
  • Захарчук З.И.
  • Конц И.Я.
  • Поклонов И.С.
SU116772A1
ТАМПОН ДЛЯ ИЗОЛЯЦИИ ЗОНЫ ПОГЛОЩЕНИЯ ПРИ БУРЕНИИ СКВАЖИН 1991
  • Жжонов В.Г.
  • Катеев И.С.
  • Вакула Я.В.
RU2018631C1
ТАМПОН ДЛЯ ИЗОЛЯЦИИ ЗОНЫ ПОГЛОЩЕНИЯ ПРИ БУРЕНИИ СКВАЖИН 1992
  • Катеев И.С.
  • Жжонов В.Г.
  • Фаткуллин Р.Х.
  • Вакула Я.В.
RU2049909C1
УСТРОЙСТВО, ВЫПОЛНЯЮЩЕЕ ФУНКЦИЮ ПАКЕРА ИЛИ ВРЕМЕННОЙ ПРОБКИ 2006
  • Дин Уилберг
RU2330931C2
Клиновая задвижка для больших давлений 1931
  • Ткаченко А.М.
SU29090A1
US 3559733 A1, 02.02.1971.

RU 2 741 978 C1

Авторы

Вахромеев Андрей Гелиевич

Смирнов Александр Сергеевич

Горлов Иван Владимирович

Сверкунов Сергей Александрович

Лисицин Максим Алексеевич

Иванишин Владимир Мирославович

Буглов Николай Александрович

Акчурин Ренат Хасанович

Ружич Валерий Васильевич

Ташкевич Иван Дмитриевич

Даты

2021-02-01Публикация

2020-06-02Подача