Изобретение относится к области сельского хозяйства, в частности к растениеводству, и может найти применение для повышения всхожести семян рапса, в технологиях получения биотипов рапса для селекции с использованием агробиотехносистем с искусственным освещением и расширении области применения гидротермального нанокремнезема.
Для каждого растения конкретно исследуются вопросы влияния искусственного освещения в различных его составляющих по спектрам электромагнитного излучения, интенсивности и времени воздействия на разных этапах вегетации и фотосинтеза при разработке элементов технологий для защищенного грунта (патент № 2601055, опубликован 27.10.2014, Бюл.№30, МПК А01С1/00, А01С1/02).
В последние 20 лет активно в практику сельскохозяйственной науки и биотехнологии входят агробиотехносистемы различных конструкций и модификаций, предназначенные для исследования процессов выращивания растений в контролируемых условиях. В России эти технические системы наиболее известны под термином фитотроны. Последние годы появились и модификации фитотронов для решения вопросов выращивания растений для космического питания и медицины (Коновалова И.О., Беркович Ю.А., Ерохин А.Н., Смолянина С.О., Яковлева О.С., Знаменский А.И., Тараканов И.Г., Радченко С.Г., Лапач С.Н. Обоснование оптимальных режимов освещения растений для космической оранжереи «Витацикл-Т» // Авиакосм. и экол. мед. - 2016. - Т. 50, № 4. - С. 28-36), а также класс фитотронов - синерготроны с программно-управляемыми параметрами, включая и режимы освещения светодиодными источниками света (Жизненный цикл и экология растений: регуляция и управление средой обитания в агробиотехносистемах. Сборник научных трудов. Выпуск 1 / Под редакцией проф. В.Н. Зеленкова - М.: Техносфера, 2018. - 208 с. ISBN 978-5-94836-543-5).
Аналогом предлагаемого решения является работа по изучению досвечивания горчицы салатной в фазе технической зрелости растений светодиодными светильниками с красным и синим полидисперсным спектром (Зеленков В.Н., Кособрюхов А.А., Лапин А.А., Латушкин В.В. Продуктивность и антиоксидантная активность горчицы салатной при облучении красным и синим светом в замкнутой системе фитотрона класса синерготрон ИСР-1.1 / Жизненный цикл и экология растений: регуляция и управление средой обитания в агробиотехносистемах. Сборник научных трудов. Вып. 1/ Под редакцией проф. В.Н. Зеленкова. - М.: Техносфера, 2018 - С. 144-154. ISBN 978-5-94836-543-5, DOI: 10.22184/978-5-94836-543-5-142-152.
Однако данный аналог рассматривает источник света в красной области излучения светодиодного светильника как полидисперсный фотонный источник широкой области красного излучения регулируемого светильника синерготрона модели 1.01 (разработка АНО Институт стратегий развития, г. Москва) и дает техническое решение вопросов интенсификации роста растений салатной культуры только в фазе технической зрелости.
Известно техническое решение, в котором растения картофеля in vitro облучают светодиодными источниками разного цвета (красного, синего, зеленого, белого) с различной интенсивностью (Ю.Ц. Мартиросян, Л.Ю. Мартиросян, А.А. Кособрюхов. Динамика фотосинтетических процессов в условиях переменного спектрального облучения растений // Сельскохозяйственная биология, 2016, том 51, №5, с. 680-687). Однако в известном решении не выявлены четкие зависимости по росту и развитию растений и обозначены параметры только одной изучаемой культуры при чередовании темноты и облучения светом разного спектра листьев картофеля в условиях фотосинтеза при его вегетации.
Наиболее близким техническим решением является способ, где семена подвергают воздействию ультрафиолетового облучения (Шаляпин С.Н. Увеличение урожайности. Современный подход. Зеленые технологии. 26.08.2018. Интернет http://ukrengineer.com/pdf/urojay.pdf.08.12.2020-D1).
Однако этот приём недостаточно эффективен, поскольку необходимы регуляторы роста, увеличивающие энергию прорастания, всхожесть и быстроту роста и развития. В прототипе используется ультрафиолет коротковолнового спектра излучения с высокой интенсивностью для реализации целей активации семян короткое время, исключающее возможности освещения ультрафиолетовым светом при последующем проращивании семян для получения микрозелени.
Технический результат - расширение возможностей использования светодиодного освещения в варианте монохроматического излучения ультрафиолетовой области спектра света в комбинации с обработкой перед проращиванием семян рапса наночастицами кремнезема гидротермального происхождения для повышения энергии прорастания и всхожести семян, высоты и урожайности ростков в фазе 7-суточного проращивания.
Техническое решение заявленного объекта заключается в том, что семена предварительно обрабатывают водным золем гидротермального нанокремнезёма при концентрации 0,01% в течение 120 минут, с последующим посевом и проращиванием в стандартных условиях по температуре и увлажнении семян в течение 7 суток, при непрерывном освещении светодиодами монохроматического ультрафиолетового света с длиной волны 380 нм и низкой интенсивностью генерируемых фотонов в 0,44 мкмоль/м2⋅с на уровне подложки с семенами.
Способ осуществляют следующим образом.
Пример. Для экспериментальной проверки способа в качестве сельскохозяйственной культуры использовали рапс, сорт Антарес (оригинатор сорта ВНИИ рапса, г. Липецк).
Для обработки семян рапса использовали гидротермальный нанокремнезем (ГНК), полученный ультрафильтрационным концентрированием и очисткой от примесей термальной природной воды из скважины с северного склона вулкана Мутновский в ООО НПФ «Наносилика» (г. Петропавловск-Камчатский). Используемый в испытаниях исходный золь нанокремнезема характеризовался исходной концентрацией по кремнезему 5,0%, полидисперсностью составляющих его наночастиц с преобладанием частиц размером 10-20 нм. Исходный золь 5% ГНК разводили дистиллированной водой (из расчета 1 мл исходного раствора на 500 мл воды) для приготовления 0,01%-ной концентрации рабочего раствора гидротермального нанокремнезема для обработки семян.
Обработку семян проводили, замачивая их в рабочем растворе в течение 120 минут часов.
Проращивание семян проводили согласно ГОСТ 12038-84 с изменениями, а именно: вместо фильтровальной бумаги использовали подложку из минеральной ваты в виде пластин 20*20 см (400 см2). Количество семян 160 шт., повторность трехкратная. Масса 1000 семян рапса сорта Антарес, использованных для посева, составляла 3,9 г. Полив проводили дистиллированной водой по мере подсыхания подложки. В качестве контроля использовали проращивание семян рапса в темноте в соответствии с ГОСТ 12038-84, которые перед посевом предварительно выдерживали в дистиллированной воде в течение 2-х часов, а в опытных вариантах проводили проращивание при комнатной температуре 22°С с освещением монохроматическим спектром ультрафиолета с длиной волны 380 нм и низкой интенсивностью фотонов с использованием светодиодных источника (СД УС) и в варианте аналогичного освещения без предварительной обработки семян гидротермальным нанокремнеземом.
На 3-й день определяли энергию прорастания, а на 7-й день определяли всхожесть семян в опытных и контрольном вариантах, измеряли высоту ростков, их урожайность в 3-х повторностях. Определяли среднее арифметическое по всхожести и измеренным метрическим показателям высоты и урожайности.
Результаты испытаний реализации способа по параметрам проращивания семян приведены в таблице 1. В таблице 2 приведены метрические показатели ростков рапса по высоте и урожайности (в г ростков на 1 м2 площади проращивания семян).
Таблица 1. Энергия прорастания (3-и сутки, %) и всхожесть (7-е сутки, %) семян рапса сорта Антарес для вариантов контроля и в предлагаемом способе
СД УС (380 нм)
СД УС (380 нм)
Применение предложенного способа с предварительной предпосевной обработкой семян рапса 0,01% водным золем гидротермального нанокремнезема в течение 120 минут и использованием светодиодного источника ультрафиолета (СД УС) с длиной волны 380 нм и низкой интенсивностью при проращивании семян 7 суток при непрерывном освещении не ведет к снижению энергии прорастания и всхожести семян при отсутствии этого при исключении из схемы опыта предварительной обработки семян водным золем 0,01% ГНК (табл.1).
Применение предложенного способа с предварительной предпосевной обработкой семян рапса 0,01% водным золем гидротермального нанокремнезема в течение 120 минут и использованием светодиодного источника ультрафиолета (СД УС) с длиной волны 380 нм и низкой интенсивностью при проращивании семян 7 суток при непрерывном освещении позволяет сохранить урожайность по росткам рапса относительно контроля при снижении их средней высоты на 18,5% (табл.2).
Применение варианта способа СД УС (380 нм) без предварительной обработки семян рапса 0,01% водным золем ГНК ведет к снижению средней высоты биотипов рапса на 32,5% и снижению их урожайности на 8,7% (табл. 2).
Эти данные позволяют утверждать о возможности селекционного получения низкорослых биотипов по росткам рапса при проращивании семян с использованием ультрафиолетового излучения низкой интенсивности при сохранении урожайности биомассы ростков на 7-е сутки проращивания до начала истинного фотосинтеза.
Таблица 2. Высота и урожайность ростков рапса сорта Антарес для вариантов контроля и предлагаемого способа
г/ м2
СД УС (380 нм)
СД УС (380 нм)
Полученные данные позволяют заключить, что проведение проращивания семян рапса с предварительной предпосевной обработкой водным золем 0,01% гидротермального нанокремнезема в течение 120 минут с последующим проращиванием в варианте низкоэнергетического монохроматического ультрафиолетового освещения светодиодами СД УС с длиной волны 380 нм позволяет повысить всхожесть, сохранить урожайность по росткам при снижении их роста, что может найти применение в селекционных работах, семеноводстве по отбору высокопродуктивных биотипов, отзывчивых на действие ультрафиолета и гидротермального нанокремнезема.
название | год | авторы | номер документа |
---|---|---|---|
Способ активации проращивания семян рапса | 2020 |
|
RU2741085C1 |
Способ активации проращивания семян нуга Абиссинского | 2020 |
|
RU2742954C1 |
Способ активации проращивания семян рапса | 2020 |
|
RU2748075C1 |
Способ активации проращивания семян сои | 2020 |
|
RU2741089C1 |
Способ активации проращивания семян сахарной свеклы | 2020 |
|
RU2746275C1 |
Способ активации проращивания семян свеклы столовой гидротермальным нанокремнеземом при светодиодном освещении | 2021 |
|
RU2773367C1 |
Способ активации проращивания семян пшеницы | 2020 |
|
RU2734081C1 |
Способ активации проращивания семян злаковых луговых трав | 2020 |
|
RU2745449C1 |
Способ активации проращивания семян салатных культур | 2020 |
|
RU2740316C1 |
Способ активации проращивания семян редиса гидротермальным нанокремнеземом при светодиодном освещении | 2021 |
|
RU2771962C1 |
Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает освещение светодиодами ультрафиолетовой области спектра. Семена предварительно обрабатывают водным золем гидротермального нанокремнезема при концентрации 0,01% в течение 120 минут, с последующим посевом и проращиванием в стандартных условиях по температуре и увлажнении семян в течение 7 суток. Далее на уровне подложки с семенами проводят непрерывное освещение светодиодами монохроматического ультрафиолетового света с длиной волны 380 нм и низкой интенсивностью генерируемых фотонов в 0,44 мкмоль/м2⋅с. Способ позволяет расширить возможности использования светодиодного освещения в варианте монохроматического излучения ультрафиолетовой области спектра света в комбинации с обработкой перед проращиванием семян рапса наночастицами кремнезема гидротермального происхождения для повышения энергии прорастания и всхожести семян, высоты и урожайности ростков в фазе 7-суточного проращивания. 2 табл., 1 пр.
Способ активации проращивания семян рапса в ультрафиолете, включающий освещение светодиодами ультрафиолетовой области спектра, отличающийся тем, что семена предварительно обрабатывают водным золем гидротермального нанокремнезема при концентрации 0,01% в течение 120 минут, с последующим посевом и проращиванием в стандартных условиях по температуре и увлажнении семян в течение 7 суток, при непрерывном освещении светодиодами монохроматического ультрафиолетового света с длиной волны 380 нм и низкой интенсивностью генерируемых фотонов в 0,44 мкмоль/м2⋅с на уровне подложки с семенами.
ШАЛЯПИН С.Н | |||
Увеличение урожайности | |||
Современный подход, Зеленые технологии, 26.08.2018, Найдено из Интернет на http://ukrengineer.com/pdf/urojay.pdf, 08.12.2020 | |||
УКРАИНЦЕВ В.С | |||
и др | |||
Влияние ультрафиолетового облучения на повышение посевных качеств семян хвойных пород// Вестник Удмуртского ун-та | |||
Биология.Науки о земле, Вып.1, 2011, с.132-137 |
Авторы
Даты
2021-02-09—Публикация
2020-09-18—Подача