Способ ведения взрывных работ с учетом зоны предразрушения Российский патент 2021 года по МПК F42D1/08 F42D3/04 E21C41/26 

Описание патента на изобретение RU2744534C1

Изобретение относится к области взрывного разрушения горных пород с использованием многорядного короткозамедленного взрывания и может быть использовано в различных отраслях, применяющих взрывные работы в скальных массивах горных пород.

Известно, что процесс дробящего действия взрыва в среде - это активная составляющая часть общего разрушения горных пород с нарушением сплошности и разделением (диспергированием) пород в результате действия на них различных физических факторов взрыва. Ударная волна от взрыва заряда ВВ переходит в волну напряжения в виде неупругого возмущения среды с достаточно плавным изменением параметров и скоростью распространения равной скорости звука в данной среде, а время выведения вещества из состояния покоя всегда меньше времени возвращения его к этому состоянию. В области распространения волн сжатия, охватывающей объем 120-150 радиусов заряда (Rз), среда ведет себя не упруго, в ней возникают остаточные деформации, ведущие к нарушению сплошности строения среды [1]. Таким образом, процесс разрушения массива горных пород, ограниченного открытой поверхностью, протекает не мгновенно, а в течение определенного времени, когда система сил и напряжений, участвующих в разрушении, значительно изменяется в пространстве. Процесс хрупкого разрушения горных пород взрывом с физической точки зрения характеризуется одним видом разрушения - отрывом под действием растягивающих напряжений от волны напряжения в фазе разрежения. Это и приводит к образованию систем трещин, разделяющих массив горных пород на отдельности.

Качественные показатели взрывов на карьерах Навоийского ГМК с применением неэлектрических систем инициирования типа ИСКРА характеризуется компактной формой развала взорванной горной массы, что способствует снижению потерь и разубоживания; уменьшением выхода крупнокусковых фракций горной массы; улучшением качества проработки подошвы уступа и снижением сейсмического эффекта. Улучшение перечисленных показателей в работе [2] объясняют многократным взрывным нагружением массива горных пород при реализации принципа «одно замедление - одна скважина», что способствует образованию дополнительных поверхностей обнажения, увеличению соударений потоков взорванной породы, а в работе [3] удельное замедление между скважинами в ряду принимают от 29 мс/м, а между рядами скважин - от 33 мс/м. Именно сочетание принципа «одно замедление - одна скважина» и увеличенных интервалов замедления позволяет повысить качество дробления горной массы.

Наиболее близким по существу решаемой задачи является способ ведения взрывных работ с учетом зоны предразрушения, включающий построение модели развития массового взрыва во времени и пространстве для конкретной схемы взрывания с удельными интервалами замедления выше 25 мс/м, дифференцированный расчет величины скважинных зарядов для различных участков ослабления массива зонами предразрушения, оценку результатов взрыва по данным экскавации горной массы и выбор оптимальных параметров взрыва по данным статистики, в котором стартовый импульс на взрывание дают одновременно для двух врубовых рядов, расположенных по краю блока; при этом врубовым принимают второй или третий ряд скважинных зарядов от края блока, а интервал замедления во врубовых рядах принимают на одну ступень ниже, чем в перпендикулярном направлении по рядам отбойных скважин [4].

Недостатком этого способа, принятого за прототип заявляемому изобретению, является повышение интенсивности ослабления массива горных пород за счет взаимного наложения зон предразрушения от двух врубовых рядов по его краям только в средней части взрываемого блока при низкой кратности волн напряжения, проходящих через район конкретных скважинных зарядов.

Технической задачей, на решение которой направлено предполагаемое изобретение, является повышение интенсивности ослабления массива горных пород на большей части взрываемого блока за счет изменения направления инициирования врубовых рядов и интервалов замедления между врубовыми и отбойными рядами.

Поставленная задача достигается тем, что в способе ведения взрывных работ с учетом зоны предразрушения, включающем построение модели развития массового взрыва во времени и пространстве для конкретной схемы взрывных работ, подачу стартового импульса на взрывание одновременно на два врубовых ряда, расположенных во втором или третьем ряду скважинных зарядов от края блока, согласно изобретению, стартовый импульс на взрывание дают с противоположных концов врубовых рядов навстречу друг другу, интервал замедления во врубовых рядах принимают не ниже 100 мс, а в перпендикулярном направлении, по рядам отбойных скважин - вдвое выше.

Выполнение способа ведения взрывных работ с учетом зоны предразрушения рассмотрим на примере взрывания блока скважинными зарядами диаметром 215 мм, расположенных по сетке 6x6 м. Взрывание проводим с применением неэлектрической системы инициирования с волноводами, например, RIONEL. Замедление между скважинами поверхностной сети может быть выполнено устройством RIONEL X, инициирование внутрискважинной сети - устройством RIONEL MS-30 с замедлением, например, 750 мс. Радиус зоны разрушения может достичь предельной величины в 30-40 радиусов заряда (Rз), т.е. 3,2-4,3 м [5], а радиус зоны предразрушения - величины в (200-250)Rз, т.е. 21,4-27,5 м [6]. Для графического построения взаимодействия зон предразрушения размер зоны разрушения принимаем до 8,5 м, а зоны предразрушения - 55 м. В поверхностной сети во врубовых рядах системой RIONEL X установлено замедление, например. 100 мс, тогда для отбойных скважинных зарядов в рядах, расположенных перпендикулярно врубовым рядам интервал замедления составит 200 мс. Инициирование поверхностной сети скважинных зарядов блока проводят с противоположных концов врубовых рядов навстречу друг другу.

На фиг. 1 представлена схема взрывания блока; на фиг. 2 - зоны дробления (залиты серым цветом), предразрушения от конкретных скважинных зарядов, число волн напряжения, прошедших через районы скважинных зарядов к интервалу замедления 800 мс указаны цифрой внутри геометрической фигуры, а кратность воздействия волн напряжений на интервале замедления отражена формой геометрической фигуры; на фиг. 3 - развитие взрыва к 1400 мс; на фиг. 4 - общее количество волн напряжения, прошедших через зоны расположения скважинных зарядов в процессе развития массового взрыва.

Анализируя фиг. 1, можно сделать следующие заключения о процессе развития массового взрыва при поверхностной схеме инициирования с замедлениями 100×200 мс. Многократное прохождения волн напряжения в стадии сжатия-растяжения через окрестности скважинных зарядов в зоне предразрушения существенно увеличивает трещиноватость массива горных пород, способствуя его расчленению на более мелкие фракции.

При использовании двух врубовых рядов все заряды блока взрываются комплектами скважин - от 2 в стартом комплекте до 16 со ступени замедления 1400 мс. Но всегда между скважинами комплекта каждого врубового ряда присутствуют зоны разрушения от предыдущих зарядов, исключающие прямое взаимодействие соседних зарядов комплекта. Поэтому каждый скважинный заряд взрывается обособленно, но волны напряжения в зонах предразрушения большинства близко расположенных зарядов комплекта взаимодействуют с наложением. Волны напряжения поглощаются в зоне разрушения, производя в ней дополнительное дробление пород, что необходимо учитывать при построении зон предразрушения - они выглядят в виде секторов различной конфигурации. Массив горных пород в районах скважинных зарядов, попадающий на перекрытие секторов зон предразрушения, кратно подвергается воздействию волн напряжения. На интервале замедления 800 мс, помимо пятикратного наложения волн напряжения от взрыва соседних скважин комплекта врубового ряда (район скважинных зарядов 87 и 139), начинается встречное наложение волн напряжения от обоих врубовых рядов. При этом в отличие от прототипа, где такое наложение двукратно охватывает три скважины, в заявляемом изобретении охвачено пять скважин - две трижды и три - четырежды.

Следует рассмотреть особенность роста трещин под действием волн напряжения. В работе [7] предлагается учесть, что под действием циклической знакопеременной нагрузки возникает поток энергии в вершину трещины. При этом одинаковые по абсолютной величине растягивающие и сжимающие напряжения создают равные потоки энергии, однако их влияние на рост трещины прямо противоположно: энергия сжимающих напряжений оказывает упрочняющее действие, а растягивающих - направлена на разрыв связей в вершине трещины. Рост трещины не может происходить на стадии действия сжимающей нагрузки, несмотря на приток энергии в вершину трещины. Эта особенность соответствует физической природе механизма разрыва связей только под действием растягивающих или касательных напряжений, причем не вся энергия растягивающих напряжений расходуется на рост трещины, а только ее превышение над энергией деформаций среды. В прототипе время развития взрыва между врубовыми рядами занимает около 2000 мс, примерно столько же и рассматриваемом примере. Но в прототипе за этот период времени при схеме инициирования 109x176 мс срабатывают 72 ступени замедления с распределением интервала срабатывания отдельных скважинных зарядов следующим образом: 109 мс - 3%, 67 мс - 6%, 42 мс -17%, 25 мс - 42%, 17 мс - 28% и 8 мс - 4%, т.е 74% времени развития взрыва занимают интервалы 25 мс и менее. Следовательно, большую часть времени развитие взрыва происходит с повышенным напряжением массива, поэтому только часть энергии волны напряжения в фазе растяжения способствует развитию трещины. В примере заявляемого изобретения только 19 ступеней замедления и все интервалы между ними равны 100 мс, за это время напряжение среды спадает, и большая часть энергии волны напряжения используется на развитие трещин.

На интервале замедления 1400 мс, зоны предразрушения от взрыва зарядов скважины 121 со стороны верхнего врубового ряда и скважины 105 со стороны нижнего врубового ряда достигли района врубовых рядов, т.е. охватили практически всю часть блока между врубовыми рядами. Максимальное число волн напряжения, одновременно воздействующих на районы скважин 100, 113 и 126, достигло 10, а общее число волн напряжения, воздействовавших на район этих зарядов, достигло 44 и 48.

На интервале замедления 1900 мс наибольшее число волн напряжения, прошедших от двух врубовых рядов с взаимным наложением через район расположения скважинных зарядов 100 и 126, достигло 69, в то время как для прототипа этот показатель составил 34.

Таким образом, заявляемый способ ведения взрывных работ с учетом зоны предразрушения позволяет, в сравнении с прототипом, удвоить максимальное число волн напряжения, прошедших через район скважинных зарядов, охватить их встречным наложением всю площадь блока между врубовыми рядами, увеличив ослабление горных пород в районе взрываемых скважинных зарядов, и тем самым решить поставленную техническую задачу.

Источники информации

1. Справочник взрывника / Б.Н. Кутузов [и др.]. Под общей редакцией Б.Н. Кутузова - М: Недра, 1988. - 511 с.

2. Рубцов С.К., Ершов В.П. Применение неэлектрических систем инициирования на карьерах Навоийского ГМК // Физические проблемы разрушения горных пород: Сб. тр. Четвертой международной научной конференции, 18-22 октября 2004 г. М. 2005. С. 387-391.

3. Патент Российской Федерации №2593285, МПК Е21С 41/26.

4. Патент Российской Федерации 2698391, МПК F42D 1/08$ F42D 3/04 (прототип).

5. Юровских А.В. Разработка модели разрушения горных пород на квазистатической стадии действия взрыва: Дис.… канд. техн. наук: 25.00.20: Санкт-Петербург, 2003. - 119 с.

6 Александров В.Е., Кочанов А.Н., Левин Б.В. О взаимосвязи прочностных и акустических свойств пород в зоне предразрушающего действия взрыва // Физико-технические проблемы разработки полезных ископаемых. - 1987. - №4. - С. 24-32.

7. Каркашадзе Г.Г., Ларионов П.В., Мишин П.Н. Моделирование роста трещины под действием циклической нагрузки // Горный информационно-аналитический бюллетень. 2011. №3. С. 258-262.

Похожие патенты RU2744534C1

название год авторы номер документа
Способ ведения взрывных работ на протяженных блоках с учетом зоны предразрушения 2022
  • Шевкун Евгений Борисович
  • Плотников Андрей Юрьевич
  • Шишкин Евгений Алексеевич
RU2791609C1
Способ циклично-поточной отработки скальных горных пород 2020
  • Шевкун Евгений Борисович
  • Лещинский Александр Валентинович
  • Плотников Андрей Юрьевич
  • Шишкин Евгений Алексеевич
RU2741649C1
Способ ведения взрывных работ с учетом зоны предразрушения 2018
  • Шевкун Евгений Борисович
  • Лещинский Александр Валентинович
  • Лысак Юрий Алексеевич
RU2698391C1
Способ определения оптимальных параметров взрывного разрушения горных пород с учетом зоны предразрушения 2017
  • Лещинский Александр Валентинович
  • Шевкун Евгений Борисович
  • Лысак Юрий Алексеевич
  • Плотников Андрей Юрьевич
RU2655009C1
Способ отработки локальных участков оруденения в крепких горных породах 2019
  • Шевкун Евгений Борисович
  • Лещинский Александр Валентинович
  • Плотников Андрей Юрьевич
  • Дрокин Дмитрий Валерьевич
RU2723419C1
Способ определения оптимального заряда ВВ с учетом зоны предразрушения 2018
  • Шевкун Евгений Борисович
  • Лещинский Александр Валентинович
  • Лысак Юрий Алексеевич
RU2677727C1
СПОСОБ ОТКРЫТОЙ РАЗРАБОТКИ ГРУППЫ УГОЛЬНЫХ ПЛАСТОВ С ВАЛОВЫМ ВЗРЫВНЫМ РЫХЛЕНИЕМ ВСКРЫШНЫХ ПОРОД 2015
  • Шевкун Евгений Борисович
  • Лещинский Александр Валентинович
  • Добровольский Александр Иванович
  • Галимьянов Алексей Алмазович
RU2593285C1
Способ проведения горных выработок по выбросоопасным пластам и породам 1990
  • Филатов Владимир Иванович
  • Ковалев Алексей Павлович
  • Киселев Василий Григорьевич
SU1765462A1
Способ определения размеров зоны предразрушения в массиве горных пород 2019
  • Шевкун Евгений Борисович
  • Лещинский Александр Валентинович
  • Шишкин Евгений Алексеевич
  • Плотников Андрей Юрьевич
RU2723418C1
СПОСОБ ОБРАЗОВАНИЯ ВРУБОВОЙ ПОЛОСТИ 2008
  • Войтов Михаил Данилович
  • Щербинин Владимир Петрович
  • Сабанцев Алексей Борисович
RU2379623C1

Иллюстрации к изобретению RU 2 744 534 C1

Реферат патента 2021 года Способ ведения взрывных работ с учетом зоны предразрушения

Изобретение относится к области взрывного разрушения горных пород с использованием многорядного короткозамедленного взрывания и может быть использовано в различных отраслях, применяющих взрывные работы в скальных массивах горных пород. Способ ведения взрывных работ с учетом зоны предразрушения, включающий построение модели развития массового взрыва во времени и пространстве для конкретной схемы взрывных работ, подачу стартового импульса на взрывание одновременно на два врубовых ряда, расположенных во втором или третьем ряду скважинных зарядов от краев блока. Стартовый импульс на взрывание дают с противоположных концов врубовых рядов навстречу друг другу. Интервал замедления во врубовых рядах принимают не ниже 100 мс. В перпендикулярном направлении, по рядам отбойных скважин, - вдвое выше. Технической задачей, на решение которой направлено предполагаемое изобретение, является повышение интенсивности ослабления массива горных пород на большей части взрываемого блока. 4 ил.

Формула изобретения RU 2 744 534 C1

Способ ведения взрывных работ с учетом зоны предразрушения, включающий построение модели развития массового взрыва во времени и пространстве для конкретной схемы взрывных работ, подачу стартового импульса на взрывание одновременно на два врубовых ряда, расположенных во втором или третьем ряду скважинных зарядов от краев блока, отличающийся тем, что стартовый импульс на взрывание дают с противоположных концов врубовых рядов навстречу друг другу, интервал замедления во врубовых рядах принимают не ниже 100 мс, а в перпендикулярном направлении, по рядам отбойных скважин, - вдвое выше.

Документы, цитированные в отчете о поиске Патент 2021 года RU2744534C1

Способ ведения взрывных работ с учетом зоны предразрушения 2018
  • Шевкун Евгений Борисович
  • Лещинский Александр Валентинович
  • Лысак Юрий Алексеевич
RU2698391C1
Способ проведения подготовительных выработок на пластах,опасных по внезапным выбросам угля и газа 1978
  • Зборщик Михаил Павлович
  • Осокин Владимир Васильевич
  • Кузяра Владимир Иосифович
SU791975A1
СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНЫХ ПАРАМЕТРОВ ВЗРЫВНОГО РАЗРУШЕНИЯ ГОРНЫХ ПОРОД 2004
  • Шевкун Евгений Борисович
  • Лещинский Александр Валентинович
  • Левин Дмитрий Владимирович
  • Матушкин Геннадий Викторович
  • Шевкун Тамара Ивановна
RU2275587C1
RU 2012129943 A, 27.01.2014
СПОСОБ ВЕДЕНИЯ БУРОВЗРЫВНЫХ РАБОТ НА КАРЬЕРАХ 2013
  • Сафронов Виктор Петрович
  • Сафронов Вадим Викторович
  • Макаров Роман Владимирович
  • Панкратов Антон Валерьевич
RU2517289C1
AU 5356000 A, 15.03.2001
WO 2005052499 A1, 09.06.2005.

RU 2 744 534 C1

Авторы

Шевкун Евгений Борисович

Лещинский Александр Валентинович

Плотников Андрей Юрьевич

Шишкин Евгений Алексеевич

Даты

2021-03-11Публикация

2020-09-30Подача